Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnvonmbllem2 Structured version   Visualization version   GIF version

Theorem opnvonmbllem2 44964
Description: An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
opnvonmbllem2.x (πœ‘ β†’ 𝑋 ∈ Fin)
opnvonmbllem2.n 𝑆 = dom (volnβ€˜π‘‹)
opnvonmbllem2.g (πœ‘ β†’ 𝐺 ∈ (TopOpenβ€˜(ℝ^β€˜π‘‹)))
opnvonmbl.k 𝐾 = {β„Ž ∈ ((β„š Γ— β„š) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺}
Assertion
Ref Expression
opnvonmbllem2 (πœ‘ β†’ 𝐺 ∈ 𝑆)
Distinct variable groups:   β„Ž,𝐺,𝑖   β„Ž,𝐾,𝑖   𝑆,β„Ž,𝑖   β„Ž,𝑋,𝑖   πœ‘,β„Ž,𝑖

Proof of Theorem opnvonmbllem2
Dummy variables 𝑐 𝑑 𝑒 π‘₯ π‘˜ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opnvonmbllem2.x . . . . . . . . . . 11 (πœ‘ β†’ 𝑋 ∈ Fin)
2 eqid 2733 . . . . . . . . . . . 12 (distβ€˜(ℝ^β€˜π‘‹)) = (distβ€˜(ℝ^β€˜π‘‹))
32rrxmetfi 24799 . . . . . . . . . . 11 (𝑋 ∈ Fin β†’ (distβ€˜(ℝ^β€˜π‘‹)) ∈ (Metβ€˜(ℝ ↑m 𝑋)))
41, 3syl 17 . . . . . . . . . 10 (πœ‘ β†’ (distβ€˜(ℝ^β€˜π‘‹)) ∈ (Metβ€˜(ℝ ↑m 𝑋)))
5 metxmet 23710 . . . . . . . . . 10 ((distβ€˜(ℝ^β€˜π‘‹)) ∈ (Metβ€˜(ℝ ↑m 𝑋)) β†’ (distβ€˜(ℝ^β€˜π‘‹)) ∈ (∞Metβ€˜(ℝ ↑m 𝑋)))
64, 5syl 17 . . . . . . . . 9 (πœ‘ β†’ (distβ€˜(ℝ^β€˜π‘‹)) ∈ (∞Metβ€˜(ℝ ↑m 𝑋)))
76adantr 482 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐺) β†’ (distβ€˜(ℝ^β€˜π‘‹)) ∈ (∞Metβ€˜(ℝ ↑m 𝑋)))
8 opnvonmbllem2.g . . . . . . . . . 10 (πœ‘ β†’ 𝐺 ∈ (TopOpenβ€˜(ℝ^β€˜π‘‹)))
9 eqid 2733 . . . . . . . . . . . . . 14 (ℝ^β€˜π‘‹) = (ℝ^β€˜π‘‹)
109rrxval 24774 . . . . . . . . . . . . 13 (𝑋 ∈ Fin β†’ (ℝ^β€˜π‘‹) = (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋)))
111, 10syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ (ℝ^β€˜π‘‹) = (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋)))
1211fveq2d 6850 . . . . . . . . . . 11 (πœ‘ β†’ (TopOpenβ€˜(ℝ^β€˜π‘‹)) = (TopOpenβ€˜(toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋))))
13 ovex 7394 . . . . . . . . . . . . 13 (ℝfld freeLMod 𝑋) ∈ V
14 eqid 2733 . . . . . . . . . . . . . 14 (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋)) = (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋))
15 eqid 2733 . . . . . . . . . . . . . 14 (distβ€˜(toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋))) = (distβ€˜(toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋)))
16 eqid 2733 . . . . . . . . . . . . . 14 (TopOpenβ€˜(toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋))) = (TopOpenβ€˜(toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋)))
1714, 15, 16tcphtopn 24613 . . . . . . . . . . . . 13 ((ℝfld freeLMod 𝑋) ∈ V β†’ (TopOpenβ€˜(toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋))) = (MetOpenβ€˜(distβ€˜(toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋)))))
1813, 17ax-mp 5 . . . . . . . . . . . 12 (TopOpenβ€˜(toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋))) = (MetOpenβ€˜(distβ€˜(toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋))))
1918a1i 11 . . . . . . . . . . 11 (πœ‘ β†’ (TopOpenβ€˜(toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋))) = (MetOpenβ€˜(distβ€˜(toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋)))))
2011eqcomd 2739 . . . . . . . . . . . . 13 (πœ‘ β†’ (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋)) = (ℝ^β€˜π‘‹))
2120fveq2d 6850 . . . . . . . . . . . 12 (πœ‘ β†’ (distβ€˜(toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋))) = (distβ€˜(ℝ^β€˜π‘‹)))
2221fveq2d 6850 . . . . . . . . . . 11 (πœ‘ β†’ (MetOpenβ€˜(distβ€˜(toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑋)))) = (MetOpenβ€˜(distβ€˜(ℝ^β€˜π‘‹))))
2312, 19, 223eqtrd 2777 . . . . . . . . . 10 (πœ‘ β†’ (TopOpenβ€˜(ℝ^β€˜π‘‹)) = (MetOpenβ€˜(distβ€˜(ℝ^β€˜π‘‹))))
248, 23eleqtrd 2836 . . . . . . . . 9 (πœ‘ β†’ 𝐺 ∈ (MetOpenβ€˜(distβ€˜(ℝ^β€˜π‘‹))))
2524adantr 482 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐺) β†’ 𝐺 ∈ (MetOpenβ€˜(distβ€˜(ℝ^β€˜π‘‹))))
26 simpr 486 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐺) β†’ π‘₯ ∈ 𝐺)
27 eqid 2733 . . . . . . . . 9 (MetOpenβ€˜(distβ€˜(ℝ^β€˜π‘‹))) = (MetOpenβ€˜(distβ€˜(ℝ^β€˜π‘‹)))
2827mopni2 23872 . . . . . . . 8 (((distβ€˜(ℝ^β€˜π‘‹)) ∈ (∞Metβ€˜(ℝ ↑m 𝑋)) ∧ 𝐺 ∈ (MetOpenβ€˜(distβ€˜(ℝ^β€˜π‘‹))) ∧ π‘₯ ∈ 𝐺) β†’ βˆƒπ‘’ ∈ ℝ+ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺)
297, 25, 26, 28syl3anc 1372 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝐺) β†’ βˆƒπ‘’ ∈ ℝ+ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺)
301ad2antrr 725 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ 𝐺) ∧ 𝑒 ∈ ℝ+) β†’ 𝑋 ∈ Fin)
31 eqid 2733 . . . . . . . . . . . . . . . . . 18 (TopOpenβ€˜(ℝ^β€˜π‘‹)) = (TopOpenβ€˜(ℝ^β€˜π‘‹))
3231rrxtoponfi 44622 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin β†’ (TopOpenβ€˜(ℝ^β€˜π‘‹)) ∈ (TopOnβ€˜(ℝ ↑m 𝑋)))
331, 32syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (TopOpenβ€˜(ℝ^β€˜π‘‹)) ∈ (TopOnβ€˜(ℝ ↑m 𝑋)))
34 toponss 22299 . . . . . . . . . . . . . . . 16 (((TopOpenβ€˜(ℝ^β€˜π‘‹)) ∈ (TopOnβ€˜(ℝ ↑m 𝑋)) ∧ 𝐺 ∈ (TopOpenβ€˜(ℝ^β€˜π‘‹))) β†’ 𝐺 βŠ† (ℝ ↑m 𝑋))
3533, 8, 34syl2anc 585 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐺 βŠ† (ℝ ↑m 𝑋))
3635adantr 482 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ 𝐺) β†’ 𝐺 βŠ† (ℝ ↑m 𝑋))
3736, 26sseldd 3949 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ 𝐺) β†’ π‘₯ ∈ (ℝ ↑m 𝑋))
3837adantr 482 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ 𝐺) ∧ 𝑒 ∈ ℝ+) β†’ π‘₯ ∈ (ℝ ↑m 𝑋))
39 simpr 486 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ 𝐺) ∧ 𝑒 ∈ ℝ+) β†’ 𝑒 ∈ ℝ+)
4030, 38, 39hoiqssbl 44956 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ 𝐺) ∧ 𝑒 ∈ ℝ+) β†’ βˆƒπ‘ ∈ (β„š ↑m 𝑋)βˆƒπ‘‘ ∈ (β„š ↑m 𝑋)(π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒)))
41403adant3 1133 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ 𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) β†’ βˆƒπ‘ ∈ (β„š ↑m 𝑋)βˆƒπ‘‘ ∈ (β„š ↑m 𝑋)(π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒)))
42 nfv 1918 . . . . . . . . . . . . . . . 16 Ⅎ𝑖(πœ‘ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺)
43 nfv 1918 . . . . . . . . . . . . . . . 16 Ⅎ𝑖(𝑐 ∈ (β„š ↑m 𝑋) ∧ 𝑑 ∈ (β„š ↑m 𝑋))
44 nfcv 2904 . . . . . . . . . . . . . . . . . 18 Ⅎ𝑖π‘₯
45 nfixp1 8862 . . . . . . . . . . . . . . . . . 18 Ⅎ𝑖X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–))
4644, 45nfel 2918 . . . . . . . . . . . . . . . . 17 Ⅎ𝑖 π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–))
47 nfcv 2904 . . . . . . . . . . . . . . . . . 18 Ⅎ𝑖(π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒)
4845, 47nfss 3940 . . . . . . . . . . . . . . . . 17 Ⅎ𝑖X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒)
4946, 48nfan 1903 . . . . . . . . . . . . . . . 16 Ⅎ𝑖(π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒))
5042, 43, 49nf3an 1905 . . . . . . . . . . . . . . 15 Ⅎ𝑖((πœ‘ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) ∧ (𝑐 ∈ (β„š ↑m 𝑋) ∧ 𝑑 ∈ (β„š ↑m 𝑋)) ∧ (π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒)))
511adantr 482 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) β†’ 𝑋 ∈ Fin)
52513ad2ant1 1134 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) ∧ (𝑐 ∈ (β„š ↑m 𝑋) ∧ 𝑑 ∈ (β„š ↑m 𝑋)) ∧ (π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒))) β†’ 𝑋 ∈ Fin)
53 elmapi 8793 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ (β„š ↑m 𝑋) β†’ 𝑐:π‘‹βŸΆβ„š)
5453adantr 482 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ (β„š ↑m 𝑋) ∧ 𝑑 ∈ (β„š ↑m 𝑋)) β†’ 𝑐:π‘‹βŸΆβ„š)
55543ad2ant2 1135 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) ∧ (𝑐 ∈ (β„š ↑m 𝑋) ∧ 𝑑 ∈ (β„š ↑m 𝑋)) ∧ (π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒))) β†’ 𝑐:π‘‹βŸΆβ„š)
56 elmapi 8793 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (β„š ↑m 𝑋) β†’ 𝑑:π‘‹βŸΆβ„š)
5756adantl 483 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ (β„š ↑m 𝑋) ∧ 𝑑 ∈ (β„š ↑m 𝑋)) β†’ 𝑑:π‘‹βŸΆβ„š)
58573ad2ant2 1135 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) ∧ (𝑐 ∈ (β„š ↑m 𝑋) ∧ 𝑑 ∈ (β„š ↑m 𝑋)) ∧ (π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒))) β†’ 𝑑:π‘‹βŸΆβ„š)
59 simp3r 1203 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) ∧ (𝑐 ∈ (β„š ↑m 𝑋) ∧ 𝑑 ∈ (β„š ↑m 𝑋)) ∧ (π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒))) β†’ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒))
60 simp1r 1199 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) ∧ (𝑐 ∈ (β„š ↑m 𝑋) ∧ 𝑑 ∈ (β„š ↑m 𝑋)) ∧ (π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒))) β†’ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺)
61 simp3l 1202 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) ∧ (𝑐 ∈ (β„š ↑m 𝑋) ∧ 𝑑 ∈ (β„š ↑m 𝑋)) ∧ (π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒))) β†’ π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)))
62 opnvonmbl.k . . . . . . . . . . . . . . 15 𝐾 = {β„Ž ∈ ((β„š Γ— β„š) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺}
63 eqid 2733 . . . . . . . . . . . . . . 15 (𝑖 ∈ 𝑋 ↦ ⟨(π‘β€˜π‘–), (π‘‘β€˜π‘–)⟩) = (𝑖 ∈ 𝑋 ↦ ⟨(π‘β€˜π‘–), (π‘‘β€˜π‘–)⟩)
6450, 52, 55, 58, 59, 60, 61, 62, 63opnvonmbllem1 44963 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) ∧ (𝑐 ∈ (β„š ↑m 𝑋) ∧ 𝑑 ∈ (β„š ↑m 𝑋)) ∧ (π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒))) β†’ βˆƒβ„Ž ∈ 𝐾 π‘₯ ∈ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–))
65643exp 1120 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) β†’ ((𝑐 ∈ (β„š ↑m 𝑋) ∧ 𝑑 ∈ (β„š ↑m 𝑋)) β†’ ((π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒)) β†’ βˆƒβ„Ž ∈ 𝐾 π‘₯ ∈ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–))))
6665adantlr 714 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ 𝐺) ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) β†’ ((𝑐 ∈ (β„š ↑m 𝑋) ∧ 𝑑 ∈ (β„š ↑m 𝑋)) β†’ ((π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒)) β†’ βˆƒβ„Ž ∈ 𝐾 π‘₯ ∈ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–))))
67663adant2 1132 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ 𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) β†’ ((𝑐 ∈ (β„š ↑m 𝑋) ∧ 𝑑 ∈ (β„š ↑m 𝑋)) β†’ ((π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒)) β†’ βˆƒβ„Ž ∈ 𝐾 π‘₯ ∈ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–))))
6867rexlimdvv 3201 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ 𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) β†’ (βˆƒπ‘ ∈ (β„š ↑m 𝑋)βˆƒπ‘‘ ∈ (β„š ↑m 𝑋)(π‘₯ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒)) β†’ βˆƒβ„Ž ∈ 𝐾 π‘₯ ∈ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–)))
6941, 68mpd 15 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ 𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺) β†’ βˆƒβ„Ž ∈ 𝐾 π‘₯ ∈ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–))
70693exp 1120 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐺) β†’ (𝑒 ∈ ℝ+ β†’ ((π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺 β†’ βˆƒβ„Ž ∈ 𝐾 π‘₯ ∈ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–))))
7170rexlimdv 3147 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝐺) β†’ (βˆƒπ‘’ ∈ ℝ+ (π‘₯(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝑒) βŠ† 𝐺 β†’ βˆƒβ„Ž ∈ 𝐾 π‘₯ ∈ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–)))
7229, 71mpd 15 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝐺) β†’ βˆƒβ„Ž ∈ 𝐾 π‘₯ ∈ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–))
73 eliun 4962 . . . . . 6 (π‘₯ ∈ βˆͺ β„Ž ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) ↔ βˆƒβ„Ž ∈ 𝐾 π‘₯ ∈ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–))
7472, 73sylibr 233 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝐺) β†’ π‘₯ ∈ βˆͺ β„Ž ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–))
7574ralrimiva 3140 . . . 4 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐺 π‘₯ ∈ βˆͺ β„Ž ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–))
76 dfss3 3936 . . . 4 (𝐺 βŠ† βˆͺ β„Ž ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) ↔ βˆ€π‘₯ ∈ 𝐺 π‘₯ ∈ βˆͺ β„Ž ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–))
7775, 76sylibr 233 . . 3 (πœ‘ β†’ 𝐺 βŠ† βˆͺ β„Ž ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–))
7862eleq2i 2826 . . . . . . . . 9 (β„Ž ∈ 𝐾 ↔ β„Ž ∈ {β„Ž ∈ ((β„š Γ— β„š) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺})
7978biimpi 215 . . . . . . . 8 (β„Ž ∈ 𝐾 β†’ β„Ž ∈ {β„Ž ∈ ((β„š Γ— β„š) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺})
8079adantl 483 . . . . . . 7 ((πœ‘ ∧ β„Ž ∈ 𝐾) β†’ β„Ž ∈ {β„Ž ∈ ((β„š Γ— β„š) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺})
81 rabid 3426 . . . . . . 7 (β„Ž ∈ {β„Ž ∈ ((β„š Γ— β„š) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺} ↔ (β„Ž ∈ ((β„š Γ— β„š) ↑m 𝑋) ∧ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺))
8280, 81sylib 217 . . . . . 6 ((πœ‘ ∧ β„Ž ∈ 𝐾) β†’ (β„Ž ∈ ((β„š Γ— β„š) ↑m 𝑋) ∧ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺))
8382simprd 497 . . . . 5 ((πœ‘ ∧ β„Ž ∈ 𝐾) β†’ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺)
8483ralrimiva 3140 . . . 4 (πœ‘ β†’ βˆ€β„Ž ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺)
85 iunss 5009 . . . 4 (βˆͺ β„Ž ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺 ↔ βˆ€β„Ž ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺)
8684, 85sylibr 233 . . 3 (πœ‘ β†’ βˆͺ β„Ž ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺)
8777, 86eqssd 3965 . 2 (πœ‘ β†’ 𝐺 = βˆͺ β„Ž ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–))
88 opnvonmbllem2.n . . . 4 𝑆 = dom (volnβ€˜π‘‹)
891, 88dmovnsal 44943 . . 3 (πœ‘ β†’ 𝑆 ∈ SAlg)
90 ssrab2 4041 . . . . . 6 {β„Ž ∈ ((β„š Γ— β„š) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺} βŠ† ((β„š Γ— β„š) ↑m 𝑋)
9162, 90eqsstri 3982 . . . . 5 𝐾 βŠ† ((β„š Γ— β„š) ↑m 𝑋)
9291a1i 11 . . . 4 (πœ‘ β†’ 𝐾 βŠ† ((β„š Γ— β„š) ↑m 𝑋))
93 qct 43687 . . . . . . 7 β„š β‰Ό Ο‰
9493a1i 11 . . . . . 6 (πœ‘ β†’ β„š β‰Ό Ο‰)
95 xpct 9960 . . . . . 6 ((β„š β‰Ό Ο‰ ∧ β„š β‰Ό Ο‰) β†’ (β„š Γ— β„š) β‰Ό Ο‰)
9694, 94, 95syl2anc 585 . . . . 5 (πœ‘ β†’ (β„š Γ— β„š) β‰Ό Ο‰)
9796, 1mpct 43513 . . . 4 (πœ‘ β†’ ((β„š Γ— β„š) ↑m 𝑋) β‰Ό Ο‰)
98 ssct 9001 . . . 4 ((𝐾 βŠ† ((β„š Γ— β„š) ↑m 𝑋) ∧ ((β„š Γ— β„š) ↑m 𝑋) β‰Ό Ο‰) β†’ 𝐾 β‰Ό Ο‰)
9992, 97, 98syl2anc 585 . . 3 (πœ‘ β†’ 𝐾 β‰Ό Ο‰)
100 reex 11150 . . . . . . . . . 10 ℝ ∈ V
101100, 100xpex 7691 . . . . . . . . 9 (ℝ Γ— ℝ) ∈ V
102 qssre 12892 . . . . . . . . . 10 β„š βŠ† ℝ
103 xpss12 5652 . . . . . . . . . 10 ((β„š βŠ† ℝ ∧ β„š βŠ† ℝ) β†’ (β„š Γ— β„š) βŠ† (ℝ Γ— ℝ))
104102, 102, 103mp2an 691 . . . . . . . . 9 (β„š Γ— β„š) βŠ† (ℝ Γ— ℝ)
105 mapss 8833 . . . . . . . . 9 (((ℝ Γ— ℝ) ∈ V ∧ (β„š Γ— β„š) βŠ† (ℝ Γ— ℝ)) β†’ ((β„š Γ— β„š) ↑m 𝑋) βŠ† ((ℝ Γ— ℝ) ↑m 𝑋))
106101, 104, 105mp2an 691 . . . . . . . 8 ((β„š Γ— β„š) ↑m 𝑋) βŠ† ((ℝ Γ— ℝ) ↑m 𝑋)
10791sseli 3944 . . . . . . . 8 (β„Ž ∈ 𝐾 β†’ β„Ž ∈ ((β„š Γ— β„š) ↑m 𝑋))
108106, 107sselid 3946 . . . . . . 7 (β„Ž ∈ 𝐾 β†’ β„Ž ∈ ((ℝ Γ— ℝ) ↑m 𝑋))
109 elmapi 8793 . . . . . . 7 (β„Ž ∈ ((ℝ Γ— ℝ) ↑m 𝑋) β†’ β„Ž:π‘‹βŸΆ(ℝ Γ— ℝ))
110108, 109syl 17 . . . . . 6 (β„Ž ∈ 𝐾 β†’ β„Ž:π‘‹βŸΆ(ℝ Γ— ℝ))
111110adantl 483 . . . . 5 ((πœ‘ ∧ β„Ž ∈ 𝐾) β†’ β„Ž:π‘‹βŸΆ(ℝ Γ— ℝ))
112 2fveq3 6851 . . . . . 6 (π‘˜ = 𝑖 β†’ (1st β€˜(β„Žβ€˜π‘˜)) = (1st β€˜(β„Žβ€˜π‘–)))
113112cbvmptv 5222 . . . . 5 (π‘˜ ∈ 𝑋 ↦ (1st β€˜(β„Žβ€˜π‘˜))) = (𝑖 ∈ 𝑋 ↦ (1st β€˜(β„Žβ€˜π‘–)))
114 2fveq3 6851 . . . . . 6 (π‘˜ = 𝑖 β†’ (2nd β€˜(β„Žβ€˜π‘˜)) = (2nd β€˜(β„Žβ€˜π‘–)))
115114cbvmptv 5222 . . . . 5 (π‘˜ ∈ 𝑋 ↦ (2nd β€˜(β„Žβ€˜π‘˜))) = (𝑖 ∈ 𝑋 ↦ (2nd β€˜(β„Žβ€˜π‘–)))
116111, 113, 115hoicoto2 44936 . . . 4 ((πœ‘ ∧ β„Ž ∈ 𝐾) β†’ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) = X𝑖 ∈ 𝑋 (((π‘˜ ∈ 𝑋 ↦ (1st β€˜(β„Žβ€˜π‘˜)))β€˜π‘–)[,)((π‘˜ ∈ 𝑋 ↦ (2nd β€˜(β„Žβ€˜π‘˜)))β€˜π‘–)))
1171adantr 482 . . . . 5 ((πœ‘ ∧ β„Ž ∈ 𝐾) β†’ 𝑋 ∈ Fin)
118111ffvelcdmda 7039 . . . . . . 7 (((πœ‘ ∧ β„Ž ∈ 𝐾) ∧ π‘˜ ∈ 𝑋) β†’ (β„Žβ€˜π‘˜) ∈ (ℝ Γ— ℝ))
119 xp1st 7957 . . . . . . 7 ((β„Žβ€˜π‘˜) ∈ (ℝ Γ— ℝ) β†’ (1st β€˜(β„Žβ€˜π‘˜)) ∈ ℝ)
120118, 119syl 17 . . . . . 6 (((πœ‘ ∧ β„Ž ∈ 𝐾) ∧ π‘˜ ∈ 𝑋) β†’ (1st β€˜(β„Žβ€˜π‘˜)) ∈ ℝ)
121120fmpttd 7067 . . . . 5 ((πœ‘ ∧ β„Ž ∈ 𝐾) β†’ (π‘˜ ∈ 𝑋 ↦ (1st β€˜(β„Žβ€˜π‘˜))):π‘‹βŸΆβ„)
122 xp2nd 7958 . . . . . . 7 ((β„Žβ€˜π‘˜) ∈ (ℝ Γ— ℝ) β†’ (2nd β€˜(β„Žβ€˜π‘˜)) ∈ ℝ)
123118, 122syl 17 . . . . . 6 (((πœ‘ ∧ β„Ž ∈ 𝐾) ∧ π‘˜ ∈ 𝑋) β†’ (2nd β€˜(β„Žβ€˜π‘˜)) ∈ ℝ)
124123fmpttd 7067 . . . . 5 ((πœ‘ ∧ β„Ž ∈ 𝐾) β†’ (π‘˜ ∈ 𝑋 ↦ (2nd β€˜(β„Žβ€˜π‘˜))):π‘‹βŸΆβ„)
125117, 88, 121, 124hoimbl 44962 . . . 4 ((πœ‘ ∧ β„Ž ∈ 𝐾) β†’ X𝑖 ∈ 𝑋 (((π‘˜ ∈ 𝑋 ↦ (1st β€˜(β„Žβ€˜π‘˜)))β€˜π‘–)[,)((π‘˜ ∈ 𝑋 ↦ (2nd β€˜(β„Žβ€˜π‘˜)))β€˜π‘–)) ∈ 𝑆)
126116, 125eqeltrd 2834 . . 3 ((πœ‘ ∧ β„Ž ∈ 𝐾) β†’ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) ∈ 𝑆)
12789, 99, 126saliuncl 44654 . 2 (πœ‘ β†’ βˆͺ β„Ž ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) ∈ 𝑆)
12887, 127eqeltrd 2834 1 (πœ‘ β†’ 𝐺 ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  βˆƒwrex 3070  {crab 3406  Vcvv 3447   βŠ† wss 3914  βŸ¨cop 4596  βˆͺ ciun 4958   class class class wbr 5109   ↦ cmpt 5192   Γ— cxp 5635  dom cdm 5637   ∘ ccom 5641  βŸΆwf 6496  β€˜cfv 6500  (class class class)co 7361  Ο‰com 7806  1st c1st 7923  2nd c2nd 7924   ↑m cmap 8771  Xcixp 8841   β‰Ό cdom 8887  Fincfn 8889  β„cr 11058  β„šcq 12881  β„+crp 12923  [,)cico 13275  distcds 17150  TopOpenctopn 17311  βˆžMetcxmet 20804  Metcmet 20805  ballcbl 20806  MetOpencmopn 20809  β„fldcrefld 21031   freeLMod cfrlm 21175  TopOnctopon 22282  toβ„‚PreHilctcph 24554  β„^crrx 24770  volncvoln 44869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-inf2 9585  ax-cc 10379  ax-ac2 10407  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137  ax-addf 11138  ax-mulf 11139
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-iin 4961  df-disj 5075  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-of 7621  df-om 7807  df-1st 7925  df-2nd 7926  df-supp 8097  df-tpos 8161  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-2o 8417  df-oadd 8420  df-omul 8421  df-er 8654  df-map 8773  df-pm 8774  df-ixp 8842  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-fsupp 9312  df-fi 9355  df-sup 9386  df-inf 9387  df-oi 9454  df-dju 9845  df-card 9883  df-acn 9886  df-ac 10060  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-z 12508  df-dec 12627  df-uz 12772  df-q 12882  df-rp 12924  df-xneg 13041  df-xadd 13042  df-xmul 13043  df-ioo 13277  df-ico 13279  df-icc 13280  df-fz 13434  df-fzo 13577  df-fl 13706  df-seq 13916  df-exp 13977  df-hash 14240  df-cj 14993  df-re 14994  df-im 14995  df-sqrt 15129  df-abs 15130  df-clim 15379  df-rlim 15380  df-sum 15580  df-prod 15797  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-mulr 17155  df-starv 17156  df-sca 17157  df-vsca 17158  df-ip 17159  df-tset 17160  df-ple 17161  df-ds 17163  df-unif 17164  df-hom 17165  df-cco 17166  df-rest 17312  df-topn 17313  df-0g 17331  df-gsum 17332  df-topgen 17333  df-prds 17337  df-pws 17339  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-mhm 18609  df-submnd 18610  df-grp 18759  df-minusg 18760  df-sbg 18761  df-subg 18933  df-ghm 19014  df-cntz 19105  df-cmn 19572  df-abl 19573  df-mgp 19905  df-ur 19922  df-ring 19974  df-cring 19975  df-oppr 20057  df-dvdsr 20078  df-unit 20079  df-invr 20109  df-dvr 20120  df-rnghom 20156  df-drng 20221  df-field 20222  df-subrg 20262  df-abv 20319  df-staf 20347  df-srng 20348  df-lmod 20367  df-lss 20437  df-lmhm 20527  df-lvec 20608  df-sra 20678  df-rgmod 20679  df-psmet 20811  df-xmet 20812  df-met 20813  df-bl 20814  df-mopn 20815  df-cnfld 20820  df-refld 21032  df-phl 21053  df-dsmm 21161  df-frlm 21176  df-top 22266  df-topon 22283  df-topsp 22305  df-bases 22319  df-cmp 22761  df-xms 23696  df-ms 23697  df-nm 23961  df-ngp 23962  df-tng 23963  df-nrg 23964  df-nlm 23965  df-clm 24449  df-cph 24555  df-tcph 24556  df-rrx 24772  df-ovol 24851  df-vol 24852  df-salg 44640  df-sumge0 44694  df-mea 44781  df-ome 44821  df-caragen 44823  df-ovoln 44868  df-voln 44870
This theorem is referenced by:  opnvonmbl  44965
  Copyright terms: Public domain W3C validator