Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnvonmbllem2 Structured version   Visualization version   GIF version

Theorem opnvonmbllem2 46648
Description: An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
opnvonmbllem2.x (𝜑𝑋 ∈ Fin)
opnvonmbllem2.n 𝑆 = dom (voln‘𝑋)
opnvonmbllem2.g (𝜑𝐺 ∈ (TopOpen‘(ℝ^‘𝑋)))
opnvonmbl.k 𝐾 = { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
Assertion
Ref Expression
opnvonmbllem2 (𝜑𝐺𝑆)
Distinct variable groups:   ,𝐺,𝑖   ,𝐾,𝑖   𝑆,,𝑖   ,𝑋,𝑖   𝜑,,𝑖

Proof of Theorem opnvonmbllem2
Dummy variables 𝑐 𝑑 𝑒 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opnvonmbllem2.x . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
2 eqid 2737 . . . . . . . . . . . 12 (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋))
32rrxmetfi 25446 . . . . . . . . . . 11 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑m 𝑋)))
41, 3syl 17 . . . . . . . . . 10 (𝜑 → (dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑m 𝑋)))
5 metxmet 24344 . . . . . . . . . 10 ((dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑m 𝑋)) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)))
64, 5syl 17 . . . . . . . . 9 (𝜑 → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)))
76adantr 480 . . . . . . . 8 ((𝜑𝑥𝐺) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)))
8 opnvonmbllem2.g . . . . . . . . . 10 (𝜑𝐺 ∈ (TopOpen‘(ℝ^‘𝑋)))
9 eqid 2737 . . . . . . . . . . . . . 14 (ℝ^‘𝑋) = (ℝ^‘𝑋)
109rrxval 25421 . . . . . . . . . . . . 13 (𝑋 ∈ Fin → (ℝ^‘𝑋) = (toℂPreHil‘(ℝfld freeLMod 𝑋)))
111, 10syl 17 . . . . . . . . . . . 12 (𝜑 → (ℝ^‘𝑋) = (toℂPreHil‘(ℝfld freeLMod 𝑋)))
1211fveq2d 6910 . . . . . . . . . . 11 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋))))
13 ovex 7464 . . . . . . . . . . . . 13 (ℝfld freeLMod 𝑋) ∈ V
14 eqid 2737 . . . . . . . . . . . . . 14 (toℂPreHil‘(ℝfld freeLMod 𝑋)) = (toℂPreHil‘(ℝfld freeLMod 𝑋))
15 eqid 2737 . . . . . . . . . . . . . 14 (dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) = (dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋)))
16 eqid 2737 . . . . . . . . . . . . . 14 (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) = (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋)))
1714, 15, 16tcphtopn 25260 . . . . . . . . . . . . 13 ((ℝfld freeLMod 𝑋) ∈ V → (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋)))))
1813, 17ax-mp 5 . . . . . . . . . . . 12 (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋))))
1918a1i 11 . . . . . . . . . . 11 (𝜑 → (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋)))))
2011eqcomd 2743 . . . . . . . . . . . . 13 (𝜑 → (toℂPreHil‘(ℝfld freeLMod 𝑋)) = (ℝ^‘𝑋))
2120fveq2d 6910 . . . . . . . . . . . 12 (𝜑 → (dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) = (dist‘(ℝ^‘𝑋)))
2221fveq2d 6910 . . . . . . . . . . 11 (𝜑 → (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋)))) = (MetOpen‘(dist‘(ℝ^‘𝑋))))
2312, 19, 223eqtrd 2781 . . . . . . . . . 10 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘(dist‘(ℝ^‘𝑋))))
248, 23eleqtrd 2843 . . . . . . . . 9 (𝜑𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))))
2524adantr 480 . . . . . . . 8 ((𝜑𝑥𝐺) → 𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))))
26 simpr 484 . . . . . . . 8 ((𝜑𝑥𝐺) → 𝑥𝐺)
27 eqid 2737 . . . . . . . . 9 (MetOpen‘(dist‘(ℝ^‘𝑋))) = (MetOpen‘(dist‘(ℝ^‘𝑋)))
2827mopni2 24506 . . . . . . . 8 (((dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)) ∧ 𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))) ∧ 𝑥𝐺) → ∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
297, 25, 26, 28syl3anc 1373 . . . . . . 7 ((𝜑𝑥𝐺) → ∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
301ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑋 ∈ Fin)
31 eqid 2737 . . . . . . . . . . . . . . . . . 18 (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋))
3231rrxtoponfi 46306 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑m 𝑋)))
331, 32syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑m 𝑋)))
34 toponss 22933 . . . . . . . . . . . . . . . 16 (((TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑m 𝑋)) ∧ 𝐺 ∈ (TopOpen‘(ℝ^‘𝑋))) → 𝐺 ⊆ (ℝ ↑m 𝑋))
3533, 8, 34syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑𝐺 ⊆ (ℝ ↑m 𝑋))
3635adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → 𝐺 ⊆ (ℝ ↑m 𝑋))
3736, 26sseldd 3984 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → 𝑥 ∈ (ℝ ↑m 𝑋))
3837adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑥 ∈ (ℝ ↑m 𝑋))
39 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
4030, 38, 39hoiqssbl 46640 . . . . . . . . . . 11 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
41403adant3 1133 . . . . . . . . . 10 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
42 nfv 1914 . . . . . . . . . . . . . . . 16 𝑖(𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
43 nfv 1914 . . . . . . . . . . . . . . . 16 𝑖(𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋))
44 nfcv 2905 . . . . . . . . . . . . . . . . . 18 𝑖𝑥
45 nfixp1 8958 . . . . . . . . . . . . . . . . . 18 𝑖X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖))
4644, 45nfel 2920 . . . . . . . . . . . . . . . . 17 𝑖 𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖))
47 nfcv 2905 . . . . . . . . . . . . . . . . . 18 𝑖(𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)
4845, 47nfss 3976 . . . . . . . . . . . . . . . . 17 𝑖X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)
4946, 48nfan 1899 . . . . . . . . . . . . . . . 16 𝑖(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))
5042, 43, 49nf3an 1901 . . . . . . . . . . . . . . 15 𝑖((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
511adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → 𝑋 ∈ Fin)
52513ad2ant1 1134 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑋 ∈ Fin)
53 elmapi 8889 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ (ℚ ↑m 𝑋) → 𝑐:𝑋⟶ℚ)
5453adantr 480 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → 𝑐:𝑋⟶ℚ)
55543ad2ant2 1135 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑐:𝑋⟶ℚ)
56 elmapi 8889 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (ℚ ↑m 𝑋) → 𝑑:𝑋⟶ℚ)
5756adantl 481 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → 𝑑:𝑋⟶ℚ)
58573ad2ant2 1135 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑑:𝑋⟶ℚ)
59 simp3r 1203 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))
60 simp1r 1199 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
61 simp3l 1202 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)))
62 opnvonmbl.k . . . . . . . . . . . . . . 15 𝐾 = { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
63 eqid 2737 . . . . . . . . . . . . . . 15 (𝑖𝑋 ↦ ⟨(𝑐𝑖), (𝑑𝑖)⟩) = (𝑖𝑋 ↦ ⟨(𝑐𝑖), (𝑑𝑖)⟩)
6450, 52, 55, 58, 59, 60, 61, 62, 63opnvonmbllem1 46647 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
65643exp 1120 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
6665adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
67663adant2 1132 . . . . . . . . . . 11 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
6867rexlimdvv 3212 . . . . . . . . . 10 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖)))
6941, 68mpd 15 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
70693exp 1120 . . . . . . . 8 ((𝜑𝑥𝐺) → (𝑒 ∈ ℝ+ → ((𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺 → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
7170rexlimdv 3153 . . . . . . 7 ((𝜑𝑥𝐺) → (∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺 → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖)))
7229, 71mpd 15 . . . . . 6 ((𝜑𝑥𝐺) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
73 eliun 4995 . . . . . 6 (𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
7472, 73sylibr 234 . . . . 5 ((𝜑𝑥𝐺) → 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7574ralrimiva 3146 . . . 4 (𝜑 → ∀𝑥𝐺 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
76 dfss3 3972 . . . 4 (𝐺 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ ∀𝑥𝐺 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7775, 76sylibr 234 . . 3 (𝜑𝐺 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7862eleq2i 2833 . . . . . . . . 9 (𝐾 ∈ { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
7978biimpi 216 . . . . . . . 8 (𝐾 ∈ { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
8079adantl 481 . . . . . . 7 ((𝜑𝐾) → ∈ { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
81 rabid 3458 . . . . . . 7 ( ∈ { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺} ↔ ( ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺))
8280, 81sylib 218 . . . . . 6 ((𝜑𝐾) → ( ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺))
8382simprd 495 . . . . 5 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8483ralrimiva 3146 . . . 4 (𝜑 → ∀𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
85 iunss 5045 . . . 4 ( 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺 ↔ ∀𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8684, 85sylibr 234 . . 3 (𝜑 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8777, 86eqssd 4001 . 2 (𝜑𝐺 = 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
88 opnvonmbllem2.n . . . 4 𝑆 = dom (voln‘𝑋)
891, 88dmovnsal 46627 . . 3 (𝜑𝑆 ∈ SAlg)
90 ssrab2 4080 . . . . . 6 { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺} ⊆ ((ℚ × ℚ) ↑m 𝑋)
9162, 90eqsstri 4030 . . . . 5 𝐾 ⊆ ((ℚ × ℚ) ↑m 𝑋)
9291a1i 11 . . . 4 (𝜑𝐾 ⊆ ((ℚ × ℚ) ↑m 𝑋))
93 qct 45373 . . . . . . 7 ℚ ≼ ω
9493a1i 11 . . . . . 6 (𝜑 → ℚ ≼ ω)
95 xpct 10056 . . . . . 6 ((ℚ ≼ ω ∧ ℚ ≼ ω) → (ℚ × ℚ) ≼ ω)
9694, 94, 95syl2anc 584 . . . . 5 (𝜑 → (ℚ × ℚ) ≼ ω)
9796, 1mpct 45206 . . . 4 (𝜑 → ((ℚ × ℚ) ↑m 𝑋) ≼ ω)
98 ssct 9091 . . . 4 ((𝐾 ⊆ ((ℚ × ℚ) ↑m 𝑋) ∧ ((ℚ × ℚ) ↑m 𝑋) ≼ ω) → 𝐾 ≼ ω)
9992, 97, 98syl2anc 584 . . 3 (𝜑𝐾 ≼ ω)
100 reex 11246 . . . . . . . . . 10 ℝ ∈ V
101100, 100xpex 7773 . . . . . . . . 9 (ℝ × ℝ) ∈ V
102 qssre 13001 . . . . . . . . . 10 ℚ ⊆ ℝ
103 xpss12 5700 . . . . . . . . . 10 ((ℚ ⊆ ℝ ∧ ℚ ⊆ ℝ) → (ℚ × ℚ) ⊆ (ℝ × ℝ))
104102, 102, 103mp2an 692 . . . . . . . . 9 (ℚ × ℚ) ⊆ (ℝ × ℝ)
105 mapss 8929 . . . . . . . . 9 (((ℝ × ℝ) ∈ V ∧ (ℚ × ℚ) ⊆ (ℝ × ℝ)) → ((ℚ × ℚ) ↑m 𝑋) ⊆ ((ℝ × ℝ) ↑m 𝑋))
106101, 104, 105mp2an 692 . . . . . . . 8 ((ℚ × ℚ) ↑m 𝑋) ⊆ ((ℝ × ℝ) ↑m 𝑋)
10791sseli 3979 . . . . . . . 8 (𝐾 ∈ ((ℚ × ℚ) ↑m 𝑋))
108106, 107sselid 3981 . . . . . . 7 (𝐾 ∈ ((ℝ × ℝ) ↑m 𝑋))
109 elmapi 8889 . . . . . . 7 ( ∈ ((ℝ × ℝ) ↑m 𝑋) → :𝑋⟶(ℝ × ℝ))
110108, 109syl 17 . . . . . 6 (𝐾:𝑋⟶(ℝ × ℝ))
111110adantl 481 . . . . 5 ((𝜑𝐾) → :𝑋⟶(ℝ × ℝ))
112 2fveq3 6911 . . . . . 6 (𝑘 = 𝑖 → (1st ‘(𝑘)) = (1st ‘(𝑖)))
113112cbvmptv 5255 . . . . 5 (𝑘𝑋 ↦ (1st ‘(𝑘))) = (𝑖𝑋 ↦ (1st ‘(𝑖)))
114 2fveq3 6911 . . . . . 6 (𝑘 = 𝑖 → (2nd ‘(𝑘)) = (2nd ‘(𝑖)))
115114cbvmptv 5255 . . . . 5 (𝑘𝑋 ↦ (2nd ‘(𝑘))) = (𝑖𝑋 ↦ (2nd ‘(𝑖)))
116111, 113, 115hoicoto2 46620 . . . 4 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) = X𝑖𝑋 (((𝑘𝑋 ↦ (1st ‘(𝑘)))‘𝑖)[,)((𝑘𝑋 ↦ (2nd ‘(𝑘)))‘𝑖)))
1171adantr 480 . . . . 5 ((𝜑𝐾) → 𝑋 ∈ Fin)
118111ffvelcdmda 7104 . . . . . . 7 (((𝜑𝐾) ∧ 𝑘𝑋) → (𝑘) ∈ (ℝ × ℝ))
119 xp1st 8046 . . . . . . 7 ((𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝑘)) ∈ ℝ)
120118, 119syl 17 . . . . . 6 (((𝜑𝐾) ∧ 𝑘𝑋) → (1st ‘(𝑘)) ∈ ℝ)
121120fmpttd 7135 . . . . 5 ((𝜑𝐾) → (𝑘𝑋 ↦ (1st ‘(𝑘))):𝑋⟶ℝ)
122 xp2nd 8047 . . . . . . 7 ((𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝑘)) ∈ ℝ)
123118, 122syl 17 . . . . . 6 (((𝜑𝐾) ∧ 𝑘𝑋) → (2nd ‘(𝑘)) ∈ ℝ)
124123fmpttd 7135 . . . . 5 ((𝜑𝐾) → (𝑘𝑋 ↦ (2nd ‘(𝑘))):𝑋⟶ℝ)
125117, 88, 121, 124hoimbl 46646 . . . 4 ((𝜑𝐾) → X𝑖𝑋 (((𝑘𝑋 ↦ (1st ‘(𝑘)))‘𝑖)[,)((𝑘𝑋 ↦ (2nd ‘(𝑘)))‘𝑖)) ∈ 𝑆)
126116, 125eqeltrd 2841 . . 3 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) ∈ 𝑆)
12789, 99, 126saliuncl 46338 . 2 (𝜑 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ∈ 𝑆)
12887, 127eqeltrd 2841 1 (𝜑𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  wss 3951  cop 4632   ciun 4991   class class class wbr 5143  cmpt 5225   × cxp 5683  dom cdm 5685  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  ωcom 7887  1st c1st 8012  2nd c2nd 8013  m cmap 8866  Xcixp 8937  cdom 8983  Fincfn 8985  cr 11154  cq 12990  +crp 13034  [,)cico 13389  distcds 17306  TopOpenctopn 17466  ∞Metcxmet 21349  Metcmet 21350  ballcbl 21351  MetOpencmopn 21354  fldcrefld 21622   freeLMod cfrlm 21766  TopOnctopon 22916  toℂPreHilctcph 25201  ℝ^crrx 25417  volncvoln 46553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-prod 15940  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-field 20732  df-abv 20810  df-staf 20840  df-srng 20841  df-lmod 20860  df-lss 20930  df-lmhm 21021  df-lvec 21102  df-sra 21172  df-rgmod 21173  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-refld 21623  df-phl 21644  df-dsmm 21752  df-frlm 21767  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cmp 23395  df-xms 24330  df-ms 24331  df-nm 24595  df-ngp 24596  df-tng 24597  df-nrg 24598  df-nlm 24599  df-clm 25096  df-cph 25202  df-tcph 25203  df-rrx 25419  df-ovol 25499  df-vol 25500  df-salg 46324  df-sumge0 46378  df-mea 46465  df-ome 46505  df-caragen 46507  df-ovoln 46552  df-voln 46554
This theorem is referenced by:  opnvonmbl  46649
  Copyright terms: Public domain W3C validator