Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnvonmbllem2 Structured version   Visualization version   GIF version

Theorem opnvonmbllem2 46159
Description: An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
opnvonmbllem2.x (𝜑𝑋 ∈ Fin)
opnvonmbllem2.n 𝑆 = dom (voln‘𝑋)
opnvonmbllem2.g (𝜑𝐺 ∈ (TopOpen‘(ℝ^‘𝑋)))
opnvonmbl.k 𝐾 = { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
Assertion
Ref Expression
opnvonmbllem2 (𝜑𝐺𝑆)
Distinct variable groups:   ,𝐺,𝑖   ,𝐾,𝑖   𝑆,,𝑖   ,𝑋,𝑖   𝜑,,𝑖

Proof of Theorem opnvonmbllem2
Dummy variables 𝑐 𝑑 𝑒 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opnvonmbllem2.x . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
2 eqid 2725 . . . . . . . . . . . 12 (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋))
32rrxmetfi 25384 . . . . . . . . . . 11 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑m 𝑋)))
41, 3syl 17 . . . . . . . . . 10 (𝜑 → (dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑m 𝑋)))
5 metxmet 24284 . . . . . . . . . 10 ((dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑m 𝑋)) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)))
64, 5syl 17 . . . . . . . . 9 (𝜑 → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)))
76adantr 479 . . . . . . . 8 ((𝜑𝑥𝐺) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)))
8 opnvonmbllem2.g . . . . . . . . . 10 (𝜑𝐺 ∈ (TopOpen‘(ℝ^‘𝑋)))
9 eqid 2725 . . . . . . . . . . . . . 14 (ℝ^‘𝑋) = (ℝ^‘𝑋)
109rrxval 25359 . . . . . . . . . . . . 13 (𝑋 ∈ Fin → (ℝ^‘𝑋) = (toℂPreHil‘(ℝfld freeLMod 𝑋)))
111, 10syl 17 . . . . . . . . . . . 12 (𝜑 → (ℝ^‘𝑋) = (toℂPreHil‘(ℝfld freeLMod 𝑋)))
1211fveq2d 6900 . . . . . . . . . . 11 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋))))
13 ovex 7452 . . . . . . . . . . . . 13 (ℝfld freeLMod 𝑋) ∈ V
14 eqid 2725 . . . . . . . . . . . . . 14 (toℂPreHil‘(ℝfld freeLMod 𝑋)) = (toℂPreHil‘(ℝfld freeLMod 𝑋))
15 eqid 2725 . . . . . . . . . . . . . 14 (dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) = (dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋)))
16 eqid 2725 . . . . . . . . . . . . . 14 (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) = (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋)))
1714, 15, 16tcphtopn 25198 . . . . . . . . . . . . 13 ((ℝfld freeLMod 𝑋) ∈ V → (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋)))))
1813, 17ax-mp 5 . . . . . . . . . . . 12 (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋))))
1918a1i 11 . . . . . . . . . . 11 (𝜑 → (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋)))))
2011eqcomd 2731 . . . . . . . . . . . . 13 (𝜑 → (toℂPreHil‘(ℝfld freeLMod 𝑋)) = (ℝ^‘𝑋))
2120fveq2d 6900 . . . . . . . . . . . 12 (𝜑 → (dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) = (dist‘(ℝ^‘𝑋)))
2221fveq2d 6900 . . . . . . . . . . 11 (𝜑 → (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋)))) = (MetOpen‘(dist‘(ℝ^‘𝑋))))
2312, 19, 223eqtrd 2769 . . . . . . . . . 10 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘(dist‘(ℝ^‘𝑋))))
248, 23eleqtrd 2827 . . . . . . . . 9 (𝜑𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))))
2524adantr 479 . . . . . . . 8 ((𝜑𝑥𝐺) → 𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))))
26 simpr 483 . . . . . . . 8 ((𝜑𝑥𝐺) → 𝑥𝐺)
27 eqid 2725 . . . . . . . . 9 (MetOpen‘(dist‘(ℝ^‘𝑋))) = (MetOpen‘(dist‘(ℝ^‘𝑋)))
2827mopni2 24446 . . . . . . . 8 (((dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)) ∧ 𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))) ∧ 𝑥𝐺) → ∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
297, 25, 26, 28syl3anc 1368 . . . . . . 7 ((𝜑𝑥𝐺) → ∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
301ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑋 ∈ Fin)
31 eqid 2725 . . . . . . . . . . . . . . . . . 18 (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋))
3231rrxtoponfi 45817 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑m 𝑋)))
331, 32syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑m 𝑋)))
34 toponss 22873 . . . . . . . . . . . . . . . 16 (((TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑m 𝑋)) ∧ 𝐺 ∈ (TopOpen‘(ℝ^‘𝑋))) → 𝐺 ⊆ (ℝ ↑m 𝑋))
3533, 8, 34syl2anc 582 . . . . . . . . . . . . . . 15 (𝜑𝐺 ⊆ (ℝ ↑m 𝑋))
3635adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → 𝐺 ⊆ (ℝ ↑m 𝑋))
3736, 26sseldd 3977 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → 𝑥 ∈ (ℝ ↑m 𝑋))
3837adantr 479 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑥 ∈ (ℝ ↑m 𝑋))
39 simpr 483 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
4030, 38, 39hoiqssbl 46151 . . . . . . . . . . 11 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
41403adant3 1129 . . . . . . . . . 10 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
42 nfv 1909 . . . . . . . . . . . . . . . 16 𝑖(𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
43 nfv 1909 . . . . . . . . . . . . . . . 16 𝑖(𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋))
44 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑖𝑥
45 nfixp1 8937 . . . . . . . . . . . . . . . . . 18 𝑖X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖))
4644, 45nfel 2906 . . . . . . . . . . . . . . . . 17 𝑖 𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖))
47 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑖(𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)
4845, 47nfss 3969 . . . . . . . . . . . . . . . . 17 𝑖X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)
4946, 48nfan 1894 . . . . . . . . . . . . . . . 16 𝑖(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))
5042, 43, 49nf3an 1896 . . . . . . . . . . . . . . 15 𝑖((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
511adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → 𝑋 ∈ Fin)
52513ad2ant1 1130 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑋 ∈ Fin)
53 elmapi 8868 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ (ℚ ↑m 𝑋) → 𝑐:𝑋⟶ℚ)
5453adantr 479 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → 𝑐:𝑋⟶ℚ)
55543ad2ant2 1131 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑐:𝑋⟶ℚ)
56 elmapi 8868 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (ℚ ↑m 𝑋) → 𝑑:𝑋⟶ℚ)
5756adantl 480 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → 𝑑:𝑋⟶ℚ)
58573ad2ant2 1131 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑑:𝑋⟶ℚ)
59 simp3r 1199 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))
60 simp1r 1195 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
61 simp3l 1198 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)))
62 opnvonmbl.k . . . . . . . . . . . . . . 15 𝐾 = { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
63 eqid 2725 . . . . . . . . . . . . . . 15 (𝑖𝑋 ↦ ⟨(𝑐𝑖), (𝑑𝑖)⟩) = (𝑖𝑋 ↦ ⟨(𝑐𝑖), (𝑑𝑖)⟩)
6450, 52, 55, 58, 59, 60, 61, 62, 63opnvonmbllem1 46158 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
65643exp 1116 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
6665adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
67663adant2 1128 . . . . . . . . . . 11 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
6867rexlimdvv 3200 . . . . . . . . . 10 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖)))
6941, 68mpd 15 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
70693exp 1116 . . . . . . . 8 ((𝜑𝑥𝐺) → (𝑒 ∈ ℝ+ → ((𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺 → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
7170rexlimdv 3142 . . . . . . 7 ((𝜑𝑥𝐺) → (∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺 → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖)))
7229, 71mpd 15 . . . . . 6 ((𝜑𝑥𝐺) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
73 eliun 5001 . . . . . 6 (𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
7472, 73sylibr 233 . . . . 5 ((𝜑𝑥𝐺) → 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7574ralrimiva 3135 . . . 4 (𝜑 → ∀𝑥𝐺 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
76 dfss3 3965 . . . 4 (𝐺 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ ∀𝑥𝐺 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7775, 76sylibr 233 . . 3 (𝜑𝐺 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7862eleq2i 2817 . . . . . . . . 9 (𝐾 ∈ { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
7978biimpi 215 . . . . . . . 8 (𝐾 ∈ { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
8079adantl 480 . . . . . . 7 ((𝜑𝐾) → ∈ { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
81 rabid 3439 . . . . . . 7 ( ∈ { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺} ↔ ( ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺))
8280, 81sylib 217 . . . . . 6 ((𝜑𝐾) → ( ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺))
8382simprd 494 . . . . 5 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8483ralrimiva 3135 . . . 4 (𝜑 → ∀𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
85 iunss 5049 . . . 4 ( 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺 ↔ ∀𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8684, 85sylibr 233 . . 3 (𝜑 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8777, 86eqssd 3994 . 2 (𝜑𝐺 = 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
88 opnvonmbllem2.n . . . 4 𝑆 = dom (voln‘𝑋)
891, 88dmovnsal 46138 . . 3 (𝜑𝑆 ∈ SAlg)
90 ssrab2 4073 . . . . . 6 { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺} ⊆ ((ℚ × ℚ) ↑m 𝑋)
9162, 90eqsstri 4011 . . . . 5 𝐾 ⊆ ((ℚ × ℚ) ↑m 𝑋)
9291a1i 11 . . . 4 (𝜑𝐾 ⊆ ((ℚ × ℚ) ↑m 𝑋))
93 qct 44882 . . . . . . 7 ℚ ≼ ω
9493a1i 11 . . . . . 6 (𝜑 → ℚ ≼ ω)
95 xpct 10041 . . . . . 6 ((ℚ ≼ ω ∧ ℚ ≼ ω) → (ℚ × ℚ) ≼ ω)
9694, 94, 95syl2anc 582 . . . . 5 (𝜑 → (ℚ × ℚ) ≼ ω)
9796, 1mpct 44713 . . . 4 (𝜑 → ((ℚ × ℚ) ↑m 𝑋) ≼ ω)
98 ssct 9076 . . . 4 ((𝐾 ⊆ ((ℚ × ℚ) ↑m 𝑋) ∧ ((ℚ × ℚ) ↑m 𝑋) ≼ ω) → 𝐾 ≼ ω)
9992, 97, 98syl2anc 582 . . 3 (𝜑𝐾 ≼ ω)
100 reex 11231 . . . . . . . . . 10 ℝ ∈ V
101100, 100xpex 7756 . . . . . . . . 9 (ℝ × ℝ) ∈ V
102 qssre 12976 . . . . . . . . . 10 ℚ ⊆ ℝ
103 xpss12 5693 . . . . . . . . . 10 ((ℚ ⊆ ℝ ∧ ℚ ⊆ ℝ) → (ℚ × ℚ) ⊆ (ℝ × ℝ))
104102, 102, 103mp2an 690 . . . . . . . . 9 (ℚ × ℚ) ⊆ (ℝ × ℝ)
105 mapss 8908 . . . . . . . . 9 (((ℝ × ℝ) ∈ V ∧ (ℚ × ℚ) ⊆ (ℝ × ℝ)) → ((ℚ × ℚ) ↑m 𝑋) ⊆ ((ℝ × ℝ) ↑m 𝑋))
106101, 104, 105mp2an 690 . . . . . . . 8 ((ℚ × ℚ) ↑m 𝑋) ⊆ ((ℝ × ℝ) ↑m 𝑋)
10791sseli 3972 . . . . . . . 8 (𝐾 ∈ ((ℚ × ℚ) ↑m 𝑋))
108106, 107sselid 3974 . . . . . . 7 (𝐾 ∈ ((ℝ × ℝ) ↑m 𝑋))
109 elmapi 8868 . . . . . . 7 ( ∈ ((ℝ × ℝ) ↑m 𝑋) → :𝑋⟶(ℝ × ℝ))
110108, 109syl 17 . . . . . 6 (𝐾:𝑋⟶(ℝ × ℝ))
111110adantl 480 . . . . 5 ((𝜑𝐾) → :𝑋⟶(ℝ × ℝ))
112 2fveq3 6901 . . . . . 6 (𝑘 = 𝑖 → (1st ‘(𝑘)) = (1st ‘(𝑖)))
113112cbvmptv 5262 . . . . 5 (𝑘𝑋 ↦ (1st ‘(𝑘))) = (𝑖𝑋 ↦ (1st ‘(𝑖)))
114 2fveq3 6901 . . . . . 6 (𝑘 = 𝑖 → (2nd ‘(𝑘)) = (2nd ‘(𝑖)))
115114cbvmptv 5262 . . . . 5 (𝑘𝑋 ↦ (2nd ‘(𝑘))) = (𝑖𝑋 ↦ (2nd ‘(𝑖)))
116111, 113, 115hoicoto2 46131 . . . 4 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) = X𝑖𝑋 (((𝑘𝑋 ↦ (1st ‘(𝑘)))‘𝑖)[,)((𝑘𝑋 ↦ (2nd ‘(𝑘)))‘𝑖)))
1171adantr 479 . . . . 5 ((𝜑𝐾) → 𝑋 ∈ Fin)
118111ffvelcdmda 7093 . . . . . . 7 (((𝜑𝐾) ∧ 𝑘𝑋) → (𝑘) ∈ (ℝ × ℝ))
119 xp1st 8026 . . . . . . 7 ((𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝑘)) ∈ ℝ)
120118, 119syl 17 . . . . . 6 (((𝜑𝐾) ∧ 𝑘𝑋) → (1st ‘(𝑘)) ∈ ℝ)
121120fmpttd 7124 . . . . 5 ((𝜑𝐾) → (𝑘𝑋 ↦ (1st ‘(𝑘))):𝑋⟶ℝ)
122 xp2nd 8027 . . . . . . 7 ((𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝑘)) ∈ ℝ)
123118, 122syl 17 . . . . . 6 (((𝜑𝐾) ∧ 𝑘𝑋) → (2nd ‘(𝑘)) ∈ ℝ)
124123fmpttd 7124 . . . . 5 ((𝜑𝐾) → (𝑘𝑋 ↦ (2nd ‘(𝑘))):𝑋⟶ℝ)
125117, 88, 121, 124hoimbl 46157 . . . 4 ((𝜑𝐾) → X𝑖𝑋 (((𝑘𝑋 ↦ (1st ‘(𝑘)))‘𝑖)[,)((𝑘𝑋 ↦ (2nd ‘(𝑘)))‘𝑖)) ∈ 𝑆)
126116, 125eqeltrd 2825 . . 3 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) ∈ 𝑆)
12789, 99, 126saliuncl 45849 . 2 (𝜑 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ∈ 𝑆)
12887, 127eqeltrd 2825 1 (𝜑𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059  {crab 3418  Vcvv 3461  wss 3944  cop 4636   ciun 4997   class class class wbr 5149  cmpt 5232   × cxp 5676  dom cdm 5678  ccom 5682  wf 6545  cfv 6549  (class class class)co 7419  ωcom 7871  1st c1st 7992  2nd c2nd 7993  m cmap 8845  Xcixp 8916  cdom 8962  Fincfn 8964  cr 11139  cq 12965  +crp 13009  [,)cico 13361  distcds 17245  TopOpenctopn 17406  ∞Metcxmet 21281  Metcmet 21282  ballcbl 21283  MetOpencmopn 21286  fldcrefld 21553   freeLMod cfrlm 21697  TopOnctopon 22856  toℂPreHilctcph 25139  ℝ^crrx 25355  volncvoln 46064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cc 10460  ax-ac2 10488  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-acn 9967  df-ac 10141  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-rlim 15469  df-sum 15669  df-prod 15886  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-prds 17432  df-pws 17434  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-ghm 19176  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-rhm 20423  df-subrng 20495  df-subrg 20520  df-drng 20638  df-field 20639  df-abv 20709  df-staf 20737  df-srng 20738  df-lmod 20757  df-lss 20828  df-lmhm 20919  df-lvec 21000  df-sra 21070  df-rgmod 21071  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-refld 21554  df-phl 21575  df-dsmm 21683  df-frlm 21698  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cmp 23335  df-xms 24270  df-ms 24271  df-nm 24535  df-ngp 24536  df-tng 24537  df-nrg 24538  df-nlm 24539  df-clm 25034  df-cph 25140  df-tcph 25141  df-rrx 25357  df-ovol 25437  df-vol 25438  df-salg 45835  df-sumge0 45889  df-mea 45976  df-ome 46016  df-caragen 46018  df-ovoln 46063  df-voln 46065
This theorem is referenced by:  opnvonmbl  46160
  Copyright terms: Public domain W3C validator