Step | Hyp | Ref
| Expression |
1 | | opnvonmbllem2.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ Fin) |
2 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋)) |
3 | 2 | rrxmetfi 24481 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ Fin →
(dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ
↑m 𝑋))) |
4 | 1, 3 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 →
(dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ
↑m 𝑋))) |
5 | | metxmet 23395 |
. . . . . . . . . 10
⊢
((dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ
↑m 𝑋))
→ (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ
↑m 𝑋))) |
6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 →
(dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ
↑m 𝑋))) |
7 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (dist‘(ℝ^‘𝑋)) ∈
(∞Met‘(ℝ ↑m 𝑋))) |
8 | | opnvonmbllem2.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ (TopOpen‘(ℝ^‘𝑋))) |
9 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(ℝ^‘𝑋) =
(ℝ^‘𝑋) |
10 | 9 | rrxval 24456 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ Fin →
(ℝ^‘𝑋) =
(toℂPreHil‘(ℝfld freeLMod 𝑋))) |
11 | 1, 10 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℝ^‘𝑋) =
(toℂPreHil‘(ℝfld freeLMod 𝑋))) |
12 | 11 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝜑 →
(TopOpen‘(ℝ^‘𝑋)) =
(TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋)))) |
13 | | ovex 7288 |
. . . . . . . . . . . . 13
⊢
(ℝfld freeLMod 𝑋) ∈ V |
14 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(toℂPreHil‘(ℝfld freeLMod 𝑋)) =
(toℂPreHil‘(ℝfld freeLMod 𝑋)) |
15 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) =
(dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) |
16 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘(toℂPreHil‘(ℝfld freeLMod
𝑋))) =
(TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) |
17 | 14, 15, 16 | tcphtopn 24295 |
. . . . . . . . . . . . 13
⊢
((ℝfld freeLMod 𝑋) ∈ V →
(TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) =
(MetOpen‘(dist‘(toℂPreHil‘(ℝfld
freeLMod 𝑋))))) |
18 | 13, 17 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(TopOpen‘(toℂPreHil‘(ℝfld freeLMod
𝑋))) =
(MetOpen‘(dist‘(toℂPreHil‘(ℝfld
freeLMod 𝑋)))) |
19 | 18 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 →
(TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) =
(MetOpen‘(dist‘(toℂPreHil‘(ℝfld
freeLMod 𝑋))))) |
20 | 11 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(toℂPreHil‘(ℝfld freeLMod 𝑋)) = (ℝ^‘𝑋)) |
21 | 20 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(dist‘(toℂPreHil‘(ℝfld freeLMod 𝑋))) =
(dist‘(ℝ^‘𝑋))) |
22 | 21 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝜑 →
(MetOpen‘(dist‘(toℂPreHil‘(ℝfld
freeLMod 𝑋)))) =
(MetOpen‘(dist‘(ℝ^‘𝑋)))) |
23 | 12, 19, 22 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ (𝜑 →
(TopOpen‘(ℝ^‘𝑋)) =
(MetOpen‘(dist‘(ℝ^‘𝑋)))) |
24 | 8, 23 | eleqtrd 2841 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈
(MetOpen‘(dist‘(ℝ^‘𝑋)))) |
25 | 24 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → 𝐺 ∈
(MetOpen‘(dist‘(ℝ^‘𝑋)))) |
26 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → 𝑥 ∈ 𝐺) |
27 | | eqid 2738 |
. . . . . . . . 9
⊢
(MetOpen‘(dist‘(ℝ^‘𝑋))) =
(MetOpen‘(dist‘(ℝ^‘𝑋))) |
28 | 27 | mopni2 23555 |
. . . . . . . 8
⊢
(((dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ
↑m 𝑋))
∧ 𝐺 ∈
(MetOpen‘(dist‘(ℝ^‘𝑋))) ∧ 𝑥 ∈ 𝐺) → ∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) |
29 | 7, 25, 26, 28 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → ∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) |
30 | 1 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑋 ∈ Fin) |
31 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋)) |
32 | 31 | rrxtoponfi 43722 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ Fin →
(TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ
↑m 𝑋))) |
33 | 1, 32 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ
↑m 𝑋))) |
34 | | toponss 21984 |
. . . . . . . . . . . . . . . 16
⊢
(((TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ
↑m 𝑋))
∧ 𝐺 ∈
(TopOpen‘(ℝ^‘𝑋))) → 𝐺 ⊆ (ℝ ↑m 𝑋)) |
35 | 33, 8, 34 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ⊆ (ℝ ↑m 𝑋)) |
36 | 35 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → 𝐺 ⊆ (ℝ ↑m 𝑋)) |
37 | 36, 26 | sseldd 3918 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → 𝑥 ∈ (ℝ ↑m 𝑋)) |
38 | 37 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑥 ∈ (ℝ
↑m 𝑋)) |
39 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈
ℝ+) |
40 | 30, 38, 39 | hoiqssbl 44053 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ 𝑒 ∈ ℝ+) →
∃𝑐 ∈ (ℚ
↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) |
41 | 40 | 3adant3 1130 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) |
42 | | nfv 1918 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑖(𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) |
43 | | nfv 1918 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑖(𝑐 ∈ (ℚ
↑m 𝑋) ∧
𝑑 ∈ (ℚ
↑m 𝑋)) |
44 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖𝑥 |
45 | | nfixp1 8664 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖X𝑖 ∈
𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) |
46 | 44, 45 | nfel 2920 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑖 𝑥 ∈ X𝑖 ∈
𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) |
47 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖(𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) |
48 | 45, 47 | nfss 3909 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑖X𝑖 ∈
𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) |
49 | 46, 48 | nfan 1903 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑖(𝑥 ∈ X𝑖 ∈
𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) |
50 | 42, 43, 49 | nf3an 1905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑖((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) |
51 | 1 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → 𝑋 ∈ Fin) |
52 | 51 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑋 ∈ Fin) |
53 | | elmapi 8595 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 ∈ (ℚ
↑m 𝑋)
→ 𝑐:𝑋⟶ℚ) |
54 | 53 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 ∈ (ℚ
↑m 𝑋) ∧
𝑑 ∈ (ℚ
↑m 𝑋))
→ 𝑐:𝑋⟶ℚ) |
55 | 54 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑐:𝑋⟶ℚ) |
56 | | elmapi 8595 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 ∈ (ℚ
↑m 𝑋)
→ 𝑑:𝑋⟶ℚ) |
57 | 56 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 ∈ (ℚ
↑m 𝑋) ∧
𝑑 ∈ (ℚ
↑m 𝑋))
→ 𝑑:𝑋⟶ℚ) |
58 | 57 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑑:𝑋⟶ℚ) |
59 | | simp3r 1200 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) |
60 | | simp1r 1196 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) |
61 | | simp3l 1199 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖))) |
62 | | opnvonmbl.k |
. . . . . . . . . . . . . . 15
⊢ 𝐾 = {ℎ ∈ ((ℚ × ℚ)
↑m 𝑋)
∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} |
63 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ 𝑋 ↦ 〈(𝑐‘𝑖), (𝑑‘𝑖)〉) = (𝑖 ∈ 𝑋 ↦ 〈(𝑐‘𝑖), (𝑑‘𝑖)〉) |
64 | 50, 52, 55, 58, 59, 60, 61, 62, 63 | opnvonmbllem1 44060 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → ∃ℎ ∈ 𝐾 𝑥 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
65 | 64 | 3exp 1117 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → ((𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃ℎ ∈ 𝐾 𝑥 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)))) |
66 | 65 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → ((𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃ℎ ∈ 𝐾 𝑥 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)))) |
67 | 66 | 3adant2 1129 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → ((𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃ℎ ∈ 𝐾 𝑥 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)))) |
68 | 67 | rexlimdvv 3221 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑥 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃ℎ ∈ 𝐾 𝑥 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖))) |
69 | 41, 68 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ∃ℎ ∈ 𝐾 𝑥 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
70 | 69 | 3exp 1117 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (𝑒 ∈ ℝ+ → ((𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺 → ∃ℎ ∈ 𝐾 𝑥 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)))) |
71 | 70 | rexlimdv 3211 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺 → ∃ℎ ∈ 𝐾 𝑥 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖))) |
72 | 29, 71 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → ∃ℎ ∈ 𝐾 𝑥 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
73 | | eliun 4925 |
. . . . . 6
⊢ (𝑥 ∈ ∪ ℎ
∈ 𝐾 X𝑖 ∈
𝑋 (([,) ∘ ℎ)‘𝑖) ↔ ∃ℎ ∈ 𝐾 𝑥 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
74 | 72, 73 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → 𝑥 ∈ ∪
ℎ ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
75 | 74 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐺 𝑥 ∈ ∪
ℎ ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
76 | | dfss3 3905 |
. . . 4
⊢ (𝐺 ⊆ ∪ ℎ
∈ 𝐾 X𝑖 ∈
𝑋 (([,) ∘ ℎ)‘𝑖) ↔ ∀𝑥 ∈ 𝐺 𝑥 ∈ ∪
ℎ ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
77 | 75, 76 | sylibr 233 |
. . 3
⊢ (𝜑 → 𝐺 ⊆ ∪
ℎ ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
78 | 62 | eleq2i 2830 |
. . . . . . . . 9
⊢ (ℎ ∈ 𝐾 ↔ ℎ ∈ {ℎ ∈ ((ℚ × ℚ)
↑m 𝑋)
∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺}) |
79 | 78 | biimpi 215 |
. . . . . . . 8
⊢ (ℎ ∈ 𝐾 → ℎ ∈ {ℎ ∈ ((ℚ × ℚ)
↑m 𝑋)
∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺}) |
80 | 79 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ 𝐾) → ℎ ∈ {ℎ ∈ ((ℚ × ℚ)
↑m 𝑋)
∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺}) |
81 | | rabid 3304 |
. . . . . . 7
⊢ (ℎ ∈ {ℎ ∈ ((ℚ × ℚ)
↑m 𝑋)
∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} ↔ (ℎ ∈ ((ℚ × ℚ)
↑m 𝑋) ∧
X𝑖
∈ 𝑋 (([,) ∘
ℎ)‘𝑖) ⊆ 𝐺)) |
82 | 80, 81 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ ℎ ∈ 𝐾) → (ℎ ∈ ((ℚ × ℚ)
↑m 𝑋) ∧
X𝑖
∈ 𝑋 (([,) ∘
ℎ)‘𝑖) ⊆ 𝐺)) |
83 | 82 | simprd 495 |
. . . . 5
⊢ ((𝜑 ∧ ℎ ∈ 𝐾) → X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺) |
84 | 83 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀ℎ ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺) |
85 | | iunss 4971 |
. . . 4
⊢ (∪ ℎ
∈ 𝐾 X𝑖 ∈
𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺 ↔ ∀ℎ ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺) |
86 | 84, 85 | sylibr 233 |
. . 3
⊢ (𝜑 → ∪ ℎ
∈ 𝐾 X𝑖 ∈
𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺) |
87 | 77, 86 | eqssd 3934 |
. 2
⊢ (𝜑 → 𝐺 = ∪ ℎ ∈ 𝐾 X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
88 | | opnvonmbllem2.n |
. . . 4
⊢ 𝑆 = dom (voln‘𝑋) |
89 | 1, 88 | dmovnsal 44040 |
. . 3
⊢ (𝜑 → 𝑆 ∈ SAlg) |
90 | | ssrab2 4009 |
. . . . . 6
⊢ {ℎ ∈ ((ℚ ×
ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} ⊆ ((ℚ × ℚ)
↑m 𝑋) |
91 | 62, 90 | eqsstri 3951 |
. . . . 5
⊢ 𝐾 ⊆ ((ℚ ×
ℚ) ↑m 𝑋) |
92 | 91 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐾 ⊆ ((ℚ × ℚ)
↑m 𝑋)) |
93 | | qct 42791 |
. . . . . . 7
⊢ ℚ
≼ ω |
94 | 93 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℚ ≼
ω) |
95 | | xpct 9703 |
. . . . . 6
⊢ ((ℚ
≼ ω ∧ ℚ ≼ ω) → (ℚ × ℚ)
≼ ω) |
96 | 94, 94, 95 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (ℚ × ℚ)
≼ ω) |
97 | 96, 1 | mpct 42630 |
. . . 4
⊢ (𝜑 → ((ℚ × ℚ)
↑m 𝑋)
≼ ω) |
98 | | ssct 8793 |
. . . 4
⊢ ((𝐾 ⊆ ((ℚ ×
ℚ) ↑m 𝑋) ∧ ((ℚ × ℚ)
↑m 𝑋)
≼ ω) → 𝐾
≼ ω) |
99 | 92, 97, 98 | syl2anc 583 |
. . 3
⊢ (𝜑 → 𝐾 ≼ ω) |
100 | | reex 10893 |
. . . . . . . . . 10
⊢ ℝ
∈ V |
101 | 100, 100 | xpex 7581 |
. . . . . . . . 9
⊢ (ℝ
× ℝ) ∈ V |
102 | | qssre 12628 |
. . . . . . . . . 10
⊢ ℚ
⊆ ℝ |
103 | | xpss12 5595 |
. . . . . . . . . 10
⊢ ((ℚ
⊆ ℝ ∧ ℚ ⊆ ℝ) → (ℚ × ℚ)
⊆ (ℝ × ℝ)) |
104 | 102, 102,
103 | mp2an 688 |
. . . . . . . . 9
⊢ (ℚ
× ℚ) ⊆ (ℝ × ℝ) |
105 | | mapss 8635 |
. . . . . . . . 9
⊢
(((ℝ × ℝ) ∈ V ∧ (ℚ × ℚ)
⊆ (ℝ × ℝ)) → ((ℚ × ℚ)
↑m 𝑋)
⊆ ((ℝ × ℝ) ↑m 𝑋)) |
106 | 101, 104,
105 | mp2an 688 |
. . . . . . . 8
⊢ ((ℚ
× ℚ) ↑m 𝑋) ⊆ ((ℝ × ℝ)
↑m 𝑋) |
107 | 91 | sseli 3913 |
. . . . . . . 8
⊢ (ℎ ∈ 𝐾 → ℎ ∈ ((ℚ × ℚ)
↑m 𝑋)) |
108 | 106, 107 | sselid 3915 |
. . . . . . 7
⊢ (ℎ ∈ 𝐾 → ℎ ∈ ((ℝ × ℝ)
↑m 𝑋)) |
109 | | elmapi 8595 |
. . . . . . 7
⊢ (ℎ ∈ ((ℝ ×
ℝ) ↑m 𝑋) → ℎ:𝑋⟶(ℝ ×
ℝ)) |
110 | 108, 109 | syl 17 |
. . . . . 6
⊢ (ℎ ∈ 𝐾 → ℎ:𝑋⟶(ℝ ×
ℝ)) |
111 | 110 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ ℎ ∈ 𝐾) → ℎ:𝑋⟶(ℝ ×
ℝ)) |
112 | | 2fveq3 6761 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (1st ‘(ℎ‘𝑘)) = (1st ‘(ℎ‘𝑖))) |
113 | 112 | cbvmptv 5183 |
. . . . 5
⊢ (𝑘 ∈ 𝑋 ↦ (1st ‘(ℎ‘𝑘))) = (𝑖 ∈ 𝑋 ↦ (1st ‘(ℎ‘𝑖))) |
114 | | 2fveq3 6761 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (2nd ‘(ℎ‘𝑘)) = (2nd ‘(ℎ‘𝑖))) |
115 | 114 | cbvmptv 5183 |
. . . . 5
⊢ (𝑘 ∈ 𝑋 ↦ (2nd ‘(ℎ‘𝑘))) = (𝑖 ∈ 𝑋 ↦ (2nd ‘(ℎ‘𝑖))) |
116 | 111, 113,
115 | hoicoto2 44033 |
. . . 4
⊢ ((𝜑 ∧ ℎ ∈ 𝐾) → X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) = X𝑖 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ (1st ‘(ℎ‘𝑘)))‘𝑖)[,)((𝑘 ∈ 𝑋 ↦ (2nd ‘(ℎ‘𝑘)))‘𝑖))) |
117 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ℎ ∈ 𝐾) → 𝑋 ∈ Fin) |
118 | 111 | ffvelrnda 6943 |
. . . . . . 7
⊢ (((𝜑 ∧ ℎ ∈ 𝐾) ∧ 𝑘 ∈ 𝑋) → (ℎ‘𝑘) ∈ (ℝ ×
ℝ)) |
119 | | xp1st 7836 |
. . . . . . 7
⊢ ((ℎ‘𝑘) ∈ (ℝ × ℝ) →
(1st ‘(ℎ‘𝑘)) ∈ ℝ) |
120 | 118, 119 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ ℎ ∈ 𝐾) ∧ 𝑘 ∈ 𝑋) → (1st ‘(ℎ‘𝑘)) ∈ ℝ) |
121 | 120 | fmpttd 6971 |
. . . . 5
⊢ ((𝜑 ∧ ℎ ∈ 𝐾) → (𝑘 ∈ 𝑋 ↦ (1st ‘(ℎ‘𝑘))):𝑋⟶ℝ) |
122 | | xp2nd 7837 |
. . . . . . 7
⊢ ((ℎ‘𝑘) ∈ (ℝ × ℝ) →
(2nd ‘(ℎ‘𝑘)) ∈ ℝ) |
123 | 118, 122 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ ℎ ∈ 𝐾) ∧ 𝑘 ∈ 𝑋) → (2nd ‘(ℎ‘𝑘)) ∈ ℝ) |
124 | 123 | fmpttd 6971 |
. . . . 5
⊢ ((𝜑 ∧ ℎ ∈ 𝐾) → (𝑘 ∈ 𝑋 ↦ (2nd ‘(ℎ‘𝑘))):𝑋⟶ℝ) |
125 | 117, 88, 121, 124 | hoimbl 44059 |
. . . 4
⊢ ((𝜑 ∧ ℎ ∈ 𝐾) → X𝑖 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ (1st ‘(ℎ‘𝑘)))‘𝑖)[,)((𝑘 ∈ 𝑋 ↦ (2nd ‘(ℎ‘𝑘)))‘𝑖)) ∈ 𝑆) |
126 | 116, 125 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ ℎ ∈ 𝐾) → X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ∈ 𝑆) |
127 | 89, 99, 126 | saliuncl 43753 |
. 2
⊢ (𝜑 → ∪ ℎ
∈ 𝐾 X𝑖 ∈
𝑋 (([,) ∘ ℎ)‘𝑖) ∈ 𝑆) |
128 | 87, 127 | eqeltrd 2839 |
1
⊢ (𝜑 → 𝐺 ∈ 𝑆) |