MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr2dOLD Structured version   Visualization version   GIF version

Theorem enpr2dOLD 9095
Description: Obsolete version of enpr2d 9094 as of 23-Dec-2024. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
enpr2dOLD.1 (𝜑𝐴𝐶)
enpr2dOLD.2 (𝜑𝐵𝐷)
enpr2dOLD.3 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
enpr2dOLD (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2dOLD
StepHypRef Expression
1 enpr2dOLD.1 . . . . 5 (𝜑𝐴𝐶)
2 ensn1g 9067 . . . . 5 (𝐴𝐶 → {𝐴} ≈ 1o)
31, 2syl 17 . . . 4 (𝜑 → {𝐴} ≈ 1o)
4 enpr2dOLD.2 . . . . 5 (𝜑𝐵𝐷)
5 1on 8523 . . . . 5 1o ∈ On
6 en2sn 9086 . . . . 5 ((𝐵𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o})
74, 5, 6sylancl 586 . . . 4 (𝜑 → {𝐵} ≈ {1o})
8 enpr2dOLD.3 . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98neqned 2946 . . . . 5 (𝜑𝐴𝐵)
10 disjsn2 4718 . . . . 5 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
119, 10syl 17 . . . 4 (𝜑 → ({𝐴} ∩ {𝐵}) = ∅)
125onirri 6502 . . . . . 6 ¬ 1o ∈ 1o
1312a1i 11 . . . . 5 (𝜑 → ¬ 1o ∈ 1o)
14 disjsn 4717 . . . . 5 ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o)
1513, 14sylibr 234 . . . 4 (𝜑 → (1o ∩ {1o}) = ∅)
16 unen 9091 . . . 4 ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
173, 7, 11, 15, 16syl22anc 839 . . 3 (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
18 df-pr 4635 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
19 df-suc 6395 . . 3 suc 1o = (1o ∪ {1o})
2017, 18, 193brtr4g 5183 . 2 (𝜑 → {𝐴, 𝐵} ≈ suc 1o)
21 df-2o 8512 . 2 2o = suc 1o
2220, 21breqtrrdi 5191 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1538  wcel 2107  wne 2939  cun 3962  cin 3963  c0 4340  {csn 4632  {cpr 4634   class class class wbr 5149  Oncon0 6389  suc csuc 6391  1oc1o 8504  2oc2o 8505  cen 8987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-ord 6392  df-on 6393  df-suc 6395  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-1o 8511  df-2o 8512  df-en 8991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator