MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr2dOLD Structured version   Visualization version   GIF version

Theorem enpr2dOLD 9027
Description: Obsolete version of enpr2d 9026 as of 23-Dec-2024. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
enpr2dOLD.1 (𝜑𝐴𝐶)
enpr2dOLD.2 (𝜑𝐵𝐷)
enpr2dOLD.3 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
enpr2dOLD (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2dOLD
StepHypRef Expression
1 enpr2dOLD.1 . . . . 5 (𝜑𝐴𝐶)
2 ensn1g 8999 . . . . 5 (𝐴𝐶 → {𝐴} ≈ 1o)
31, 2syl 17 . . . 4 (𝜑 → {𝐴} ≈ 1o)
4 enpr2dOLD.2 . . . . 5 (𝜑𝐵𝐷)
5 1on 8455 . . . . 5 1o ∈ On
6 en2sn 9018 . . . . 5 ((𝐵𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o})
74, 5, 6sylancl 586 . . . 4 (𝜑 → {𝐵} ≈ {1o})
8 enpr2dOLD.3 . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98neqned 2934 . . . . 5 (𝜑𝐴𝐵)
10 disjsn2 4684 . . . . 5 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
119, 10syl 17 . . . 4 (𝜑 → ({𝐴} ∩ {𝐵}) = ∅)
125onirri 6455 . . . . . 6 ¬ 1o ∈ 1o
1312a1i 11 . . . . 5 (𝜑 → ¬ 1o ∈ 1o)
14 disjsn 4683 . . . . 5 ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o)
1513, 14sylibr 234 . . . 4 (𝜑 → (1o ∩ {1o}) = ∅)
16 unen 9023 . . . 4 ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
173, 7, 11, 15, 16syl22anc 838 . . 3 (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
18 df-pr 4600 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
19 df-suc 6346 . . 3 suc 1o = (1o ∪ {1o})
2017, 18, 193brtr4g 5149 . 2 (𝜑 → {𝐴, 𝐵} ≈ suc 1o)
21 df-2o 8444 . 2 2o = suc 1o
2220, 21breqtrrdi 5157 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2927  cun 3920  cin 3921  c0 4304  {csn 4597  {cpr 4599   class class class wbr 5115  Oncon0 6340  suc csuc 6342  1oc1o 8436  2oc2o 8437  cen 8919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-ord 6343  df-on 6344  df-suc 6346  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-1o 8443  df-2o 8444  df-en 8923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator