MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr2dOLD Structured version   Visualization version   GIF version

Theorem enpr2dOLD 9118
Description: Obsolete version of enpr2d 9117 as of 23-Dec-2024. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
enpr2dOLD.1 (𝜑𝐴𝐶)
enpr2dOLD.2 (𝜑𝐵𝐷)
enpr2dOLD.3 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
enpr2dOLD (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2dOLD
StepHypRef Expression
1 enpr2dOLD.1 . . . . 5 (𝜑𝐴𝐶)
2 ensn1g 9086 . . . . 5 (𝐴𝐶 → {𝐴} ≈ 1o)
31, 2syl 17 . . . 4 (𝜑 → {𝐴} ≈ 1o)
4 enpr2dOLD.2 . . . . 5 (𝜑𝐵𝐷)
5 1on 8536 . . . . 5 1o ∈ On
6 en2sn 9108 . . . . 5 ((𝐵𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o})
74, 5, 6sylancl 585 . . . 4 (𝜑 → {𝐵} ≈ {1o})
8 enpr2dOLD.3 . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98neqned 2953 . . . . 5 (𝜑𝐴𝐵)
10 disjsn2 4737 . . . . 5 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
119, 10syl 17 . . . 4 (𝜑 → ({𝐴} ∩ {𝐵}) = ∅)
125onirri 6510 . . . . . 6 ¬ 1o ∈ 1o
1312a1i 11 . . . . 5 (𝜑 → ¬ 1o ∈ 1o)
14 disjsn 4736 . . . . 5 ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o)
1513, 14sylibr 234 . . . 4 (𝜑 → (1o ∩ {1o}) = ∅)
16 unen 9114 . . . 4 ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
173, 7, 11, 15, 16syl22anc 838 . . 3 (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
18 df-pr 4651 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
19 df-suc 6403 . . 3 suc 1o = (1o ∪ {1o})
2017, 18, 193brtr4g 5200 . 2 (𝜑 → {𝐴, 𝐵} ≈ suc 1o)
21 df-2o 8525 . 2 2o = suc 1o
2220, 21breqtrrdi 5208 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  wne 2946  cun 3974  cin 3975  c0 4352  {csn 4648  {cpr 4650   class class class wbr 5166  Oncon0 6397  suc csuc 6399  1oc1o 8517  2oc2o 8518  cen 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-ord 6400  df-on 6401  df-suc 6403  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-1o 8524  df-2o 8525  df-en 9006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator