MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr2dOLD Structured version   Visualization version   GIF version

Theorem enpr2dOLD 9071
Description: Obsolete version of enpr2d 9070 as of 23-Dec-2024. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
enpr2dOLD.1 (𝜑𝐴𝐶)
enpr2dOLD.2 (𝜑𝐵𝐷)
enpr2dOLD.3 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
enpr2dOLD (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2dOLD
StepHypRef Expression
1 enpr2dOLD.1 . . . . 5 (𝜑𝐴𝐶)
2 ensn1g 9043 . . . . 5 (𝐴𝐶 → {𝐴} ≈ 1o)
31, 2syl 17 . . . 4 (𝜑 → {𝐴} ≈ 1o)
4 enpr2dOLD.2 . . . . 5 (𝜑𝐵𝐷)
5 1on 8499 . . . . 5 1o ∈ On
6 en2sn 9062 . . . . 5 ((𝐵𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o})
74, 5, 6sylancl 586 . . . 4 (𝜑 → {𝐵} ≈ {1o})
8 enpr2dOLD.3 . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98neqned 2938 . . . . 5 (𝜑𝐴𝐵)
10 disjsn2 4692 . . . . 5 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
119, 10syl 17 . . . 4 (𝜑 → ({𝐴} ∩ {𝐵}) = ∅)
125onirri 6476 . . . . . 6 ¬ 1o ∈ 1o
1312a1i 11 . . . . 5 (𝜑 → ¬ 1o ∈ 1o)
14 disjsn 4691 . . . . 5 ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o)
1513, 14sylibr 234 . . . 4 (𝜑 → (1o ∩ {1o}) = ∅)
16 unen 9067 . . . 4 ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
173, 7, 11, 15, 16syl22anc 838 . . 3 (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
18 df-pr 4609 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
19 df-suc 6369 . . 3 suc 1o = (1o ∪ {1o})
2017, 18, 193brtr4g 5157 . 2 (𝜑 → {𝐴, 𝐵} ≈ suc 1o)
21 df-2o 8488 . 2 2o = suc 1o
2220, 21breqtrrdi 5165 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2107  wne 2931  cun 3929  cin 3930  c0 4313  {csn 4606  {cpr 4608   class class class wbr 5123  Oncon0 6363  suc csuc 6365  1oc1o 8480  2oc2o 8481  cen 8963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-ord 6366  df-on 6367  df-suc 6369  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-1o 8487  df-2o 8488  df-en 8967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator