MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr2dOLD Structured version   Visualization version   GIF version

Theorem enpr2dOLD 9052
Description: Obsolete version of enpr2d 9051 as of 23-Dec-2024. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
enpr2dOLD.1 (𝜑𝐴𝐶)
enpr2dOLD.2 (𝜑𝐵𝐷)
enpr2dOLD.3 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
enpr2dOLD (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2dOLD
StepHypRef Expression
1 enpr2dOLD.1 . . . . 5 (𝜑𝐴𝐶)
2 ensn1g 9021 . . . . 5 (𝐴𝐶 → {𝐴} ≈ 1o)
31, 2syl 17 . . . 4 (𝜑 → {𝐴} ≈ 1o)
4 enpr2dOLD.2 . . . . 5 (𝜑𝐵𝐷)
5 1on 8479 . . . . 5 1o ∈ On
6 en2sn 9043 . . . . 5 ((𝐵𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o})
74, 5, 6sylancl 585 . . . 4 (𝜑 → {𝐵} ≈ {1o})
8 enpr2dOLD.3 . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98neqned 2941 . . . . 5 (𝜑𝐴𝐵)
10 disjsn2 4711 . . . . 5 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
119, 10syl 17 . . . 4 (𝜑 → ({𝐴} ∩ {𝐵}) = ∅)
125onirri 6471 . . . . . 6 ¬ 1o ∈ 1o
1312a1i 11 . . . . 5 (𝜑 → ¬ 1o ∈ 1o)
14 disjsn 4710 . . . . 5 ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o)
1513, 14sylibr 233 . . . 4 (𝜑 → (1o ∩ {1o}) = ∅)
16 unen 9048 . . . 4 ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
173, 7, 11, 15, 16syl22anc 836 . . 3 (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
18 df-pr 4626 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
19 df-suc 6364 . . 3 suc 1o = (1o ∪ {1o})
2017, 18, 193brtr4g 5175 . 2 (𝜑 → {𝐴, 𝐵} ≈ suc 1o)
21 df-2o 8468 . 2 2o = suc 1o
2220, 21breqtrrdi 5183 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  wne 2934  cun 3941  cin 3942  c0 4317  {csn 4623  {cpr 4625   class class class wbr 5141  Oncon0 6358  suc csuc 6360  1oc1o 8460  2oc2o 8461  cen 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-ord 6361  df-on 6362  df-suc 6364  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-1o 8467  df-2o 8468  df-en 8942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator