![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enpr2dOLD | Structured version Visualization version GIF version |
Description: Obsolete version of enpr2d 9094 as of 23-Dec-2024. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enpr2dOLD.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
enpr2dOLD.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
enpr2dOLD.3 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
enpr2dOLD | ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enpr2dOLD.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | ensn1g 9067 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → {𝐴} ≈ 1o) |
4 | enpr2dOLD.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
5 | 1on 8523 | . . . . 5 ⊢ 1o ∈ On | |
6 | en2sn 9086 | . . . . 5 ⊢ ((𝐵 ∈ 𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o}) | |
7 | 4, 5, 6 | sylancl 586 | . . . 4 ⊢ (𝜑 → {𝐵} ≈ {1o}) |
8 | enpr2dOLD.3 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
9 | 8 | neqned 2946 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
10 | disjsn2 4718 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
12 | 5 | onirri 6502 | . . . . . 6 ⊢ ¬ 1o ∈ 1o |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → ¬ 1o ∈ 1o) |
14 | disjsn 4717 | . . . . 5 ⊢ ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o) | |
15 | 13, 14 | sylibr 234 | . . . 4 ⊢ (𝜑 → (1o ∩ {1o}) = ∅) |
16 | unen 9091 | . . . 4 ⊢ ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o})) | |
17 | 3, 7, 11, 15, 16 | syl22anc 839 | . . 3 ⊢ (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o})) |
18 | df-pr 4635 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
19 | df-suc 6395 | . . 3 ⊢ suc 1o = (1o ∪ {1o}) | |
20 | 17, 18, 19 | 3brtr4g 5183 | . 2 ⊢ (𝜑 → {𝐴, 𝐵} ≈ suc 1o) |
21 | df-2o 8512 | . 2 ⊢ 2o = suc 1o | |
22 | 20, 21 | breqtrrdi 5191 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1538 ∈ wcel 2107 ≠ wne 2939 ∪ cun 3962 ∩ cin 3963 ∅c0 4340 {csn 4632 {cpr 4634 class class class wbr 5149 Oncon0 6389 suc csuc 6391 1oc1o 8504 2oc2o 8505 ≈ cen 8987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-ord 6392 df-on 6393 df-suc 6395 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-1o 8511 df-2o 8512 df-en 8991 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |