| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enpr2dOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of enpr2d 9026 as of 23-Dec-2024. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enpr2dOLD.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| enpr2dOLD.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| enpr2dOLD.3 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| enpr2dOLD | ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enpr2dOLD.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | ensn1g 8999 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → {𝐴} ≈ 1o) |
| 4 | enpr2dOLD.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 5 | 1on 8455 | . . . . 5 ⊢ 1o ∈ On | |
| 6 | en2sn 9018 | . . . . 5 ⊢ ((𝐵 ∈ 𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o}) | |
| 7 | 4, 5, 6 | sylancl 586 | . . . 4 ⊢ (𝜑 → {𝐵} ≈ {1o}) |
| 8 | enpr2dOLD.3 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
| 9 | 8 | neqned 2934 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 10 | disjsn2 4684 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
| 12 | 5 | onirri 6455 | . . . . . 6 ⊢ ¬ 1o ∈ 1o |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → ¬ 1o ∈ 1o) |
| 14 | disjsn 4683 | . . . . 5 ⊢ ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o) | |
| 15 | 13, 14 | sylibr 234 | . . . 4 ⊢ (𝜑 → (1o ∩ {1o}) = ∅) |
| 16 | unen 9023 | . . . 4 ⊢ ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o})) | |
| 17 | 3, 7, 11, 15, 16 | syl22anc 838 | . . 3 ⊢ (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o})) |
| 18 | df-pr 4600 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 19 | df-suc 6346 | . . 3 ⊢ suc 1o = (1o ∪ {1o}) | |
| 20 | 17, 18, 19 | 3brtr4g 5149 | . 2 ⊢ (𝜑 → {𝐴, 𝐵} ≈ suc 1o) |
| 21 | df-2o 8444 | . 2 ⊢ 2o = suc 1o | |
| 22 | 20, 21 | breqtrrdi 5157 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∪ cun 3920 ∩ cin 3921 ∅c0 4304 {csn 4597 {cpr 4599 class class class wbr 5115 Oncon0 6340 suc csuc 6342 1oc1o 8436 2oc2o 8437 ≈ cen 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-ord 6343 df-on 6344 df-suc 6346 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-1o 8443 df-2o 8444 df-en 8923 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |