MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssctOLD Structured version   Visualization version   GIF version

Theorem ssctOLD 9097
Description: Obsolete version of ssct 9096 as of 7-Dec-2024. (Contributed by Thierry Arnoux, 31-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssctOLD ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)

Proof of Theorem ssctOLD
StepHypRef Expression
1 ctex 9009 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ V)
2 ssdomg 9045 . . . 4 (𝐵 ∈ V → (𝐴𝐵𝐴𝐵))
31, 2syl 17 . . 3 (𝐵 ≼ ω → (𝐴𝐵𝐴𝐵))
43impcom 407 . 2 ((𝐴𝐵𝐵 ≼ ω) → 𝐴𝐵)
5 domtr 9052 . 2 ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)
64, 5sylancom 588 1 ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  Vcvv 3479  wss 3964   class class class wbr 5149  ωcom 7891  cdom 8988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-dom 8992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator