MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssctOLD Structured version   Visualization version   GIF version

Theorem ssctOLD 9120
Description: Obsolete version of ssct 9119 as of 7-Dec-2024. (Contributed by Thierry Arnoux, 31-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssctOLD ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)

Proof of Theorem ssctOLD
StepHypRef Expression
1 ctex 9025 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ V)
2 ssdomg 9062 . . . 4 (𝐵 ∈ V → (𝐴𝐵𝐴𝐵))
31, 2syl 17 . . 3 (𝐵 ≼ ω → (𝐴𝐵𝐴𝐵))
43impcom 407 . 2 ((𝐴𝐵𝐵 ≼ ω) → 𝐴𝐵)
5 domtr 9069 . 2 ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)
64, 5sylancom 587 1 ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3488  wss 3976   class class class wbr 5166  ωcom 7905  cdom 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-dom 9007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator