MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssctOLD Structured version   Visualization version   GIF version

Theorem ssctOLD 9037
Description: Obsolete version of ssct 9036 as of 7-Dec-2024. (Contributed by Thierry Arnoux, 31-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssctOLD ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)

Proof of Theorem ssctOLD
StepHypRef Expression
1 ctex 8944 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ V)
2 ssdomg 8981 . . . 4 (𝐵 ∈ V → (𝐴𝐵𝐴𝐵))
31, 2syl 17 . . 3 (𝐵 ≼ ω → (𝐴𝐵𝐴𝐵))
43impcom 408 . 2 ((𝐴𝐵𝐵 ≼ ω) → 𝐴𝐵)
5 domtr 8988 . 2 ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)
64, 5sylancom 588 1 ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3474  wss 3945   class class class wbr 5142  ωcom 7839  cdom 8922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5143  df-opab 5205  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-dom 8926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator