![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssctOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ssct 9047 as of 7-Dec-2024. (Contributed by Thierry Arnoux, 31-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ssctOLD | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctex 8955 | . . . 4 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
2 | ssdomg 8992 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐵 ≼ ω → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
4 | 3 | impcom 408 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ 𝐵) |
5 | domtr 8999 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
6 | 4, 5 | sylancom 588 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3947 class class class wbr 5147 ωcom 7851 ≼ cdom 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-dom 8937 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |