![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssctOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ssct 9050 as of 7-Dec-2024. (Contributed by Thierry Arnoux, 31-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ssctOLD | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctex 8958 | . . . 4 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
2 | ssdomg 8995 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐵 ≼ ω → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
4 | 3 | impcom 407 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ 𝐵) |
5 | domtr 9002 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
6 | 4, 5 | sylancom 587 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 Vcvv 3468 ⊆ wss 3943 class class class wbr 5141 ωcom 7851 ≼ cdom 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-dom 8940 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |