Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomsubgmo Structured version   Visualization version   GIF version

Theorem idomsubgmo 43154
Description: The units of an integral domain have at most one subgroup of any single finite cardinality. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Revised by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
idomsubgmo.g 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
Assertion
Ref Expression
idomsubgmo ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁)
Distinct variable groups:   𝑦,𝐺   𝑦,𝑁   𝑦,𝑅

Proof of Theorem idomsubgmo
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6933 . . . . . . . . 9 (Base‘𝐺) ∈ V
21rabex 5357 . . . . . . . 8 {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ V
3 simp2l 1199 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 ∈ (SubGrp‘𝐺))
4 eqid 2740 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
54subgss 19167 . . . . . . . . . . 11 (𝑦 ∈ (SubGrp‘𝐺) → 𝑦 ⊆ (Base‘𝐺))
63, 5syl 17 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 ⊆ (Base‘𝐺))
7 simpl2l 1226 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → 𝑦 ∈ (SubGrp‘𝐺))
8 simp3l 1201 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑦) = 𝑁)
9 simp1r 1198 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑁 ∈ ℕ)
109nnnn0d 12613 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑁 ∈ ℕ0)
118, 10eqeltrd 2844 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑦) ∈ ℕ0)
12 vex 3492 . . . . . . . . . . . . . . 15 𝑦 ∈ V
13 hashclb 14407 . . . . . . . . . . . . . . 15 (𝑦 ∈ V → (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0))
1412, 13ax-mp 5 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0)
1511, 14sylibr 234 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 ∈ Fin)
1615adantr 480 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → 𝑦 ∈ Fin)
17 simpr 484 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → 𝑧𝑦)
18 eqid 2740 . . . . . . . . . . . . 13 (od‘𝐺) = (od‘𝐺)
1918odsubdvds 19613 . . . . . . . . . . . 12 ((𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑦 ∈ Fin ∧ 𝑧𝑦) → ((od‘𝐺)‘𝑧) ∥ (♯‘𝑦))
207, 16, 17, 19syl3anc 1371 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → ((od‘𝐺)‘𝑧) ∥ (♯‘𝑦))
218adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → (♯‘𝑦) = 𝑁)
2220, 21breqtrd 5192 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → ((od‘𝐺)‘𝑧) ∥ 𝑁)
236, 22ssrabdv 4097 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 ⊆ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁})
24 simp2r 1200 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑥 ∈ (SubGrp‘𝐺))
254subgss 19167 . . . . . . . . . . 11 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥 ⊆ (Base‘𝐺))
2624, 25syl 17 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑥 ⊆ (Base‘𝐺))
27 simpl2r 1227 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → 𝑥 ∈ (SubGrp‘𝐺))
28 simp3r 1202 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑥) = 𝑁)
2928, 10eqeltrd 2844 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑥) ∈ ℕ0)
30 vex 3492 . . . . . . . . . . . . . . 15 𝑥 ∈ V
31 hashclb 14407 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 ∈ Fin ↔ (♯‘𝑥) ∈ ℕ0))
3230, 31ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∈ Fin ↔ (♯‘𝑥) ∈ ℕ0)
3329, 32sylibr 234 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑥 ∈ Fin)
3433adantr 480 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → 𝑥 ∈ Fin)
35 simpr 484 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → 𝑧𝑥)
3618odsubdvds 19613 . . . . . . . . . . . 12 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ Fin ∧ 𝑧𝑥) → ((od‘𝐺)‘𝑧) ∥ (♯‘𝑥))
3727, 34, 35, 36syl3anc 1371 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → ((od‘𝐺)‘𝑧) ∥ (♯‘𝑥))
3828adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → (♯‘𝑥) = 𝑁)
3937, 38breqtrd 5192 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → ((od‘𝐺)‘𝑧) ∥ 𝑁)
4026, 39ssrabdv 4097 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑥 ⊆ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁})
4123, 40unssd 4215 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (𝑦𝑥) ⊆ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁})
42 ssdomg 9060 . . . . . . . 8 ({𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ V → ((𝑦𝑥) ⊆ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} → (𝑦𝑥) ≼ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}))
432, 41, 42mpsyl 68 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (𝑦𝑥) ≼ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁})
44 idomsubgmo.g . . . . . . . . . . 11 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
4544, 4, 18idomodle 43152 . . . . . . . . . 10 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ 𝑁)
46453ad2ant1 1133 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ 𝑁)
4746, 8breqtrrd 5194 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ (♯‘𝑦))
482a1i 11 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ V)
49 hashbnd 14385 . . . . . . . . . 10 (({𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ V ∧ (♯‘𝑦) ∈ ℕ0 ∧ (♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ (♯‘𝑦)) → {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ Fin)
5048, 11, 47, 49syl3anc 1371 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ Fin)
51 hashdom 14428 . . . . . . . . 9 (({𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ Fin ∧ 𝑦 ∈ V) → ((♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ (♯‘𝑦) ↔ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ≼ 𝑦))
5250, 12, 51sylancl 585 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → ((♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ (♯‘𝑦) ↔ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ≼ 𝑦))
5347, 52mpbid 232 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ≼ 𝑦)
54 domtr 9067 . . . . . . 7 (((𝑦𝑥) ≼ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∧ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ≼ 𝑦) → (𝑦𝑥) ≼ 𝑦)
5543, 53, 54syl2anc 583 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (𝑦𝑥) ≼ 𝑦)
5612, 30unex 7779 . . . . . . 7 (𝑦𝑥) ∈ V
57 ssun1 4201 . . . . . . 7 𝑦 ⊆ (𝑦𝑥)
58 ssdomg 9060 . . . . . . 7 ((𝑦𝑥) ∈ V → (𝑦 ⊆ (𝑦𝑥) → 𝑦 ≼ (𝑦𝑥)))
5956, 57, 58mp2 9 . . . . . 6 𝑦 ≼ (𝑦𝑥)
60 sbth 9159 . . . . . 6 (((𝑦𝑥) ≼ 𝑦𝑦 ≼ (𝑦𝑥)) → (𝑦𝑥) ≈ 𝑦)
6155, 59, 60sylancl 585 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (𝑦𝑥) ≈ 𝑦)
628, 28eqtr4d 2783 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑦) = (♯‘𝑥))
63 hashen 14396 . . . . . . . 8 ((𝑦 ∈ Fin ∧ 𝑥 ∈ Fin) → ((♯‘𝑦) = (♯‘𝑥) ↔ 𝑦𝑥))
6415, 33, 63syl2anc 583 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → ((♯‘𝑦) = (♯‘𝑥) ↔ 𝑦𝑥))
6562, 64mpbid 232 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦𝑥)
66 fiuneneq 43153 . . . . . 6 ((𝑦𝑥𝑦 ∈ Fin) → ((𝑦𝑥) ≈ 𝑦𝑦 = 𝑥))
6765, 15, 66syl2anc 583 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → ((𝑦𝑥) ≈ 𝑦𝑦 = 𝑥))
6861, 67mpbid 232 . . . 4 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 = 𝑥)
69683expia 1121 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺))) → (((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁) → 𝑦 = 𝑥))
7069ralrimivva 3208 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∀𝑦 ∈ (SubGrp‘𝐺)∀𝑥 ∈ (SubGrp‘𝐺)(((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁) → 𝑦 = 𝑥))
71 fveqeq2 6929 . . 3 (𝑦 = 𝑥 → ((♯‘𝑦) = 𝑁 ↔ (♯‘𝑥) = 𝑁))
7271rmo4 3752 . 2 (∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁 ↔ ∀𝑦 ∈ (SubGrp‘𝐺)∀𝑥 ∈ (SubGrp‘𝐺)(((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁) → 𝑦 = 𝑥))
7370, 72sylibr 234 1 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  ∃*wrmo 3387  {crab 3443  Vcvv 3488  cun 3974  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  cen 9000  cdom 9001  Fincfn 9003  cle 11325  cn 12293  0cn0 12553  chash 14379  cdvds 16302  Basecbs 17258  s cress 17287  SubGrpcsubg 19160  odcod 19566  mulGrpcmgp 20161  Unitcui 20381  IDomncidom 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-eqg 19165  df-ghm 19253  df-cntz 19357  df-od 19570  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-domn 20717  df-idom 20718  df-lmod 20882  df-lss 20953  df-lsp 20993  df-cnfld 21388  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-evl1 22341  df-mdeg 26114  df-deg1 26115  df-mon1 26190  df-uc1p 26191  df-q1p 26192  df-r1p 26193
This theorem is referenced by:  proot1mul  43155
  Copyright terms: Public domain W3C validator