Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomsubgmo Structured version   Visualization version   GIF version

Theorem idomsubgmo 38294
Description: The units of an integral domain have at most one subgroup of any single finite cardinality. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Revised by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
idomsubgmo.g 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
Assertion
Ref Expression
idomsubgmo ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁)
Distinct variable groups:   𝑦,𝐺   𝑦,𝑁   𝑦,𝑅

Proof of Theorem idomsubgmo
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6430 . . . . . . . . 9 (Base‘𝐺) ∈ V
21rabex 5020 . . . . . . . 8 {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ V
3 simp2l 1249 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 ∈ (SubGrp‘𝐺))
4 eqid 2817 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
54subgss 17816 . . . . . . . . . . 11 (𝑦 ∈ (SubGrp‘𝐺) → 𝑦 ⊆ (Base‘𝐺))
63, 5syl 17 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 ⊆ (Base‘𝐺))
7 simpl2l 1290 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → 𝑦 ∈ (SubGrp‘𝐺))
8 simp3l 1251 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑦) = 𝑁)
9 simp1r 1248 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑁 ∈ ℕ)
109nnnn0d 11636 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑁 ∈ ℕ0)
118, 10eqeltrd 2896 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑦) ∈ ℕ0)
12 vex 3405 . . . . . . . . . . . . . . 15 𝑦 ∈ V
13 hashclb 13386 . . . . . . . . . . . . . . 15 (𝑦 ∈ V → (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0))
1412, 13ax-mp 5 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0)
1511, 14sylibr 225 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 ∈ Fin)
1615adantr 468 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → 𝑦 ∈ Fin)
17 simpr 473 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → 𝑧𝑦)
18 eqid 2817 . . . . . . . . . . . . 13 (od‘𝐺) = (od‘𝐺)
1918odsubdvds 18206 . . . . . . . . . . . 12 ((𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑦 ∈ Fin ∧ 𝑧𝑦) → ((od‘𝐺)‘𝑧) ∥ (♯‘𝑦))
207, 16, 17, 19syl3anc 1483 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → ((od‘𝐺)‘𝑧) ∥ (♯‘𝑦))
218adantr 468 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → (♯‘𝑦) = 𝑁)
2220, 21breqtrd 4881 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑦) → ((od‘𝐺)‘𝑧) ∥ 𝑁)
236, 22ssrabdv 3889 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 ⊆ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁})
24 simp2r 1250 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑥 ∈ (SubGrp‘𝐺))
254subgss 17816 . . . . . . . . . . 11 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥 ⊆ (Base‘𝐺))
2624, 25syl 17 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑥 ⊆ (Base‘𝐺))
27 simpl2r 1292 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → 𝑥 ∈ (SubGrp‘𝐺))
28 simp3r 1252 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑥) = 𝑁)
2928, 10eqeltrd 2896 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑥) ∈ ℕ0)
30 vex 3405 . . . . . . . . . . . . . . 15 𝑥 ∈ V
31 hashclb 13386 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 ∈ Fin ↔ (♯‘𝑥) ∈ ℕ0))
3230, 31ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∈ Fin ↔ (♯‘𝑥) ∈ ℕ0)
3329, 32sylibr 225 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑥 ∈ Fin)
3433adantr 468 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → 𝑥 ∈ Fin)
35 simpr 473 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → 𝑧𝑥)
3618odsubdvds 18206 . . . . . . . . . . . 12 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ Fin ∧ 𝑧𝑥) → ((od‘𝐺)‘𝑧) ∥ (♯‘𝑥))
3727, 34, 35, 36syl3anc 1483 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → ((od‘𝐺)‘𝑧) ∥ (♯‘𝑥))
3828adantr 468 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → (♯‘𝑥) = 𝑁)
3937, 38breqtrd 4881 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) ∧ 𝑧𝑥) → ((od‘𝐺)‘𝑧) ∥ 𝑁)
4026, 39ssrabdv 3889 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑥 ⊆ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁})
4123, 40unssd 3999 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (𝑦𝑥) ⊆ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁})
42 ssdomg 8247 . . . . . . . 8 ({𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ V → ((𝑦𝑥) ⊆ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} → (𝑦𝑥) ≼ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}))
432, 41, 42mpsyl 68 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (𝑦𝑥) ≼ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁})
44 idomsubgmo.g . . . . . . . . . . 11 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
4544, 4, 18idomodle 38292 . . . . . . . . . 10 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ 𝑁)
46453ad2ant1 1156 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ 𝑁)
4746, 8breqtrrd 4883 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ (♯‘𝑦))
482a1i 11 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ V)
49 hashbnd 13362 . . . . . . . . . 10 (({𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ V ∧ (♯‘𝑦) ∈ ℕ0 ∧ (♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ (♯‘𝑦)) → {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ Fin)
5048, 11, 47, 49syl3anc 1483 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ Fin)
51 hashdom 13405 . . . . . . . . 9 (({𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∈ Fin ∧ 𝑦 ∈ V) → ((♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ (♯‘𝑦) ↔ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ≼ 𝑦))
5250, 12, 51sylancl 576 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → ((♯‘{𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁}) ≤ (♯‘𝑦) ↔ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ≼ 𝑦))
5347, 52mpbid 223 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ≼ 𝑦)
54 domtr 8254 . . . . . . 7 (((𝑦𝑥) ≼ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ∧ {𝑧 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑧) ∥ 𝑁} ≼ 𝑦) → (𝑦𝑥) ≼ 𝑦)
5543, 53, 54syl2anc 575 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (𝑦𝑥) ≼ 𝑦)
5612, 30unex 7195 . . . . . . 7 (𝑦𝑥) ∈ V
57 ssun1 3986 . . . . . . 7 𝑦 ⊆ (𝑦𝑥)
58 ssdomg 8247 . . . . . . 7 ((𝑦𝑥) ∈ V → (𝑦 ⊆ (𝑦𝑥) → 𝑦 ≼ (𝑦𝑥)))
5956, 57, 58mp2 9 . . . . . 6 𝑦 ≼ (𝑦𝑥)
60 sbth 8328 . . . . . 6 (((𝑦𝑥) ≼ 𝑦𝑦 ≼ (𝑦𝑥)) → (𝑦𝑥) ≈ 𝑦)
6155, 59, 60sylancl 576 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (𝑦𝑥) ≈ 𝑦)
628, 28eqtr4d 2854 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → (♯‘𝑦) = (♯‘𝑥))
63 hashen 13374 . . . . . . . 8 ((𝑦 ∈ Fin ∧ 𝑥 ∈ Fin) → ((♯‘𝑦) = (♯‘𝑥) ↔ 𝑦𝑥))
6415, 33, 63syl2anc 575 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → ((♯‘𝑦) = (♯‘𝑥) ↔ 𝑦𝑥))
6562, 64mpbid 223 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦𝑥)
66 fiuneneq 38293 . . . . . 6 ((𝑦𝑥𝑦 ∈ Fin) → ((𝑦𝑥) ≈ 𝑦𝑦 = 𝑥))
6765, 15, 66syl2anc 575 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → ((𝑦𝑥) ≈ 𝑦𝑦 = 𝑥))
6861, 67mpbid 223 . . . 4 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) ∧ ((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁)) → 𝑦 = 𝑥)
69683expia 1143 . . 3 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺))) → (((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁) → 𝑦 = 𝑥))
7069ralrimivva 3170 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∀𝑦 ∈ (SubGrp‘𝐺)∀𝑥 ∈ (SubGrp‘𝐺)(((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁) → 𝑦 = 𝑥))
71 fveqeq2 6426 . . 3 (𝑦 = 𝑥 → ((♯‘𝑦) = 𝑁 ↔ (♯‘𝑥) = 𝑁))
7271rmo4 3608 . 2 (∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁 ↔ ∀𝑦 ∈ (SubGrp‘𝐺)∀𝑥 ∈ (SubGrp‘𝐺)(((♯‘𝑦) = 𝑁 ∧ (♯‘𝑥) = 𝑁) → 𝑦 = 𝑥))
7370, 72sylibr 225 1 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2157  wral 3107  ∃*wrmo 3110  {crab 3111  Vcvv 3402  cun 3778  wss 3780   class class class wbr 4855  cfv 6110  (class class class)co 6883  cen 8198  cdom 8199  Fincfn 8201  cle 10369  cn 11314  0cn0 11578  chash 13356  cdvds 15222  Basecbs 16087  s cress 16088  SubGrpcsubg 17809  odcod 18164  mulGrpcmgp 18710  Unitcui 18860  IDomncidom 19509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7188  ax-inf2 8794  ax-cnex 10286  ax-resscn 10287  ax-1cn 10288  ax-icn 10289  ax-addcl 10290  ax-addrcl 10291  ax-mulcl 10292  ax-mulrcl 10293  ax-mulcom 10294  ax-addass 10295  ax-mulass 10296  ax-distr 10297  ax-i2m1 10298  ax-1ne0 10299  ax-1rid 10300  ax-rnegex 10301  ax-rrecex 10302  ax-cnre 10303  ax-pre-lttri 10304  ax-pre-lttrn 10305  ax-pre-ltadd 10306  ax-pre-mulgt0 10307  ax-pre-sup 10308  ax-addf 10309  ax-mulf 10310
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-iin 4726  df-disj 4824  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-se 5284  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5906  df-ord 5952  df-on 5953  df-lim 5954  df-suc 5955  df-iota 6073  df-fun 6112  df-fn 6113  df-f 6114  df-f1 6115  df-fo 6116  df-f1o 6117  df-fv 6118  df-isom 6119  df-riota 6844  df-ov 6886  df-oprab 6887  df-mpt2 6888  df-of 7136  df-ofr 7137  df-om 7305  df-1st 7407  df-2nd 7408  df-supp 7539  df-tpos 7596  df-wrecs 7651  df-recs 7713  df-rdg 7751  df-1o 7805  df-2o 7806  df-oadd 7809  df-omul 7810  df-er 7988  df-ec 7990  df-qs 7994  df-map 8103  df-pm 8104  df-ixp 8155  df-en 8202  df-dom 8203  df-sdom 8204  df-fin 8205  df-fsupp 8524  df-sup 8596  df-inf 8597  df-oi 8663  df-card 9057  df-acn 9060  df-cda 9284  df-pnf 10370  df-mnf 10371  df-xr 10372  df-ltxr 10373  df-le 10374  df-sub 10562  df-neg 10563  df-div 10979  df-nn 11315  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-7 11380  df-8 11381  df-9 11382  df-n0 11579  df-xnn0 11649  df-z 11663  df-dec 11779  df-uz 11924  df-rp 12066  df-fz 12569  df-fzo 12709  df-fl 12836  df-mod 12912  df-seq 13044  df-exp 13103  df-hash 13357  df-cj 14081  df-re 14082  df-im 14083  df-sqrt 14217  df-abs 14218  df-clim 14461  df-sum 14659  df-dvds 15223  df-struct 16089  df-ndx 16090  df-slot 16091  df-base 16093  df-sets 16094  df-ress 16095  df-plusg 16185  df-mulr 16186  df-starv 16187  df-sca 16188  df-vsca 16189  df-ip 16190  df-tset 16191  df-ple 16192  df-ds 16194  df-unif 16195  df-hom 16196  df-cco 16197  df-0g 16326  df-gsum 16327  df-prds 16332  df-pws 16334  df-mre 16470  df-mrc 16471  df-acs 16473  df-mgm 17466  df-sgrp 17508  df-mnd 17519  df-mhm 17559  df-submnd 17560  df-grp 17649  df-minusg 17650  df-sbg 17651  df-mulg 17765  df-subg 17812  df-eqg 17814  df-ghm 17879  df-cntz 17970  df-od 18168  df-cmn 18415  df-abl 18416  df-mgp 18711  df-ur 18723  df-srg 18727  df-ring 18770  df-cring 18771  df-oppr 18844  df-dvdsr 18862  df-unit 18863  df-invr 18893  df-rnghom 18938  df-subrg 19001  df-lmod 19088  df-lss 19156  df-lsp 19198  df-nzr 19486  df-rlreg 19511  df-domn 19512  df-idom 19513  df-assa 19540  df-asp 19541  df-ascl 19542  df-psr 19584  df-mvr 19585  df-mpl 19586  df-opsr 19588  df-evls 19733  df-evl 19734  df-psr1 19777  df-vr1 19778  df-ply1 19779  df-coe1 19780  df-evl1 19908  df-cnfld 19974  df-mdeg 24051  df-deg1 24052  df-mon1 24126  df-uc1p 24127  df-q1p 24128  df-r1p 24129
This theorem is referenced by:  proot1mul  38295
  Copyright terms: Public domain W3C validator