Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem11 Structured version   Visualization version   GIF version

Theorem cvmlift2lem11 35285
Description: Lemma for cvmlift2 35288. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2.m 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
cvmlift2lem11.1 (𝜑𝑈 ∈ II)
cvmlift2lem11.2 (𝜑𝑉 ∈ II)
cvmlift2lem11.3 (𝜑𝑌𝑉)
cvmlift2lem11.4 (𝜑𝑍𝑉)
cvmlift2lem11.5 (𝜑 → (∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)))
Assertion
Ref Expression
cvmlift2lem11 (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀))
Distinct variable groups:   𝑤,𝑓,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑤,𝑥,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑓,𝐽,𝑤,𝑥,𝑦,𝑧   𝑤,𝑈,𝑧   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧   𝑤,𝑉   𝑓,𝐻,𝑤,𝑥,𝑦,𝑧   𝑧,𝑍   𝐶,𝑓,𝑤,𝑥,𝑦,𝑧   𝑃,𝑓,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑓,𝑌,𝑤,𝑥,𝑦,𝑧   𝑓,𝐾,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑓)   𝑃(𝑤)   𝑈(𝑥,𝑦,𝑓)   𝑀(𝑤,𝑓)   𝑉(𝑥,𝑦,𝑧,𝑓)   𝑍(𝑥,𝑦,𝑤,𝑓)

Proof of Theorem cvmlift2lem11
StepHypRef Expression
1 cvmlift2lem11.1 . . . . . . 7 (𝜑𝑈 ∈ II)
21adantr 480 . . . . . 6 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑈 ∈ II)
3 elssuni 4891 . . . . . . 7 (𝑈 ∈ II → 𝑈 II)
4 iiuni 24790 . . . . . . 7 (0[,]1) = II
53, 4sseqtrrdi 3979 . . . . . 6 (𝑈 ∈ II → 𝑈 ⊆ (0[,]1))
62, 5syl 17 . . . . 5 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑈 ⊆ (0[,]1))
7 cvmlift2lem11.4 . . . . . . . 8 (𝜑𝑍𝑉)
8 cvmlift2lem11.2 . . . . . . . 8 (𝜑𝑉 ∈ II)
9 elunii 4866 . . . . . . . . 9 ((𝑍𝑉𝑉 ∈ II) → 𝑍 II)
109, 4eleqtrrdi 2839 . . . . . . . 8 ((𝑍𝑉𝑉 ∈ II) → 𝑍 ∈ (0[,]1))
117, 8, 10syl2anc 584 . . . . . . 7 (𝜑𝑍 ∈ (0[,]1))
1211adantr 480 . . . . . 6 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑍 ∈ (0[,]1))
1312snssd 4763 . . . . 5 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑍} ⊆ (0[,]1))
14 xpss12 5638 . . . . 5 ((𝑈 ⊆ (0[,]1) ∧ {𝑍} ⊆ (0[,]1)) → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
156, 13, 14syl2anc 584 . . . 4 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
16 cvmlift2lem11.3 . . . . . . . . . 10 (𝜑𝑌𝑉)
1716adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑌𝑉)
18 cvmlift2.b . . . . . . . . . . . . 13 𝐵 = 𝐶
19 cvmlift2.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
20 cvmlift2.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
21 cvmlift2.p . . . . . . . . . . . . 13 (𝜑𝑃𝐵)
22 cvmlift2.i . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑃) = (0𝐺0))
23 cvmlift2.h . . . . . . . . . . . . 13 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
24 cvmlift2.k . . . . . . . . . . . . 13 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
2518, 19, 20, 21, 22, 23, 24cvmlift2lem5 35279 . . . . . . . . . . . 12 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
2625adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
278adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑉 ∈ II)
28 elssuni 4891 . . . . . . . . . . . . . . . 16 (𝑉 ∈ II → 𝑉 II)
2928, 4sseqtrrdi 3979 . . . . . . . . . . . . . . 15 (𝑉 ∈ II → 𝑉 ⊆ (0[,]1))
3027, 29syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑉 ⊆ (0[,]1))
3130, 17sseldd 3938 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑌 ∈ (0[,]1))
3231snssd 4763 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑌} ⊆ (0[,]1))
33 xpss12 5638 . . . . . . . . . . . 12 ((𝑈 ⊆ (0[,]1) ∧ {𝑌} ⊆ (0[,]1)) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
346, 32, 33syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
3526, 34fssresd 6695 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵)
3634adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
37 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → 𝑧 ∈ (𝑈 × {𝑌}))
38 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ 𝑀)
39 cvmlift2.m . . . . . . . . . . . . . . 15 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
4038, 39sseqtrdi 3978 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)})
41 ssrab 4026 . . . . . . . . . . . . . . 15 ((𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} ↔ ((𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)) ∧ ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)))
4241simprbi 496 . . . . . . . . . . . . . 14 ((𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} → ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
4340, 42syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
4443r19.21bi 3221 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
45 iitopon 24788 . . . . . . . . . . . . . . 15 II ∈ (TopOn‘(0[,]1))
46 txtopon 23494 . . . . . . . . . . . . . . 15 ((II ∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
4745, 45, 46mp2an 692 . . . . . . . . . . . . . 14 (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1)))
4847toponunii 22819 . . . . . . . . . . . . 13 ((0[,]1) × (0[,]1)) = (II ×t II)
4948cnpresti 23191 . . . . . . . . . . . 12 (((𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)) ∧ 𝑧 ∈ (𝑈 × {𝑌}) ∧ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
5036, 37, 44, 49syl3anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
5150ralrimiva 3121 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
52 resttopon 23064 . . . . . . . . . . . 12 (((II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧ (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1))) → ((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})))
5347, 34, 52sylancr 587 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})))
54 cvmtop1 35232 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
5519, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Top)
5655adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐶 ∈ Top)
5718toptopon 22820 . . . . . . . . . . . 12 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
5856, 57sylib 218 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐶 ∈ (TopOn‘𝐵))
59 cncnp 23183 . . . . . . . . . . 11 ((((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})) ∧ 𝐶 ∈ (TopOn‘𝐵)) → ((𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶) ↔ ((𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵 ∧ ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))))
6053, 58, 59syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶) ↔ ((𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵 ∧ ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))))
6135, 51, 60mpbir2and 713 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶))
62 sneq 4589 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → {𝑤} = {𝑌})
6362xpeq2d 5653 . . . . . . . . . . . 12 (𝑤 = 𝑌 → (𝑈 × {𝑤}) = (𝑈 × {𝑌}))
6463reseq2d 5934 . . . . . . . . . . 11 (𝑤 = 𝑌 → (𝐾 ↾ (𝑈 × {𝑤})) = (𝐾 ↾ (𝑈 × {𝑌})))
6563oveq2d 7369 . . . . . . . . . . . 12 (𝑤 = 𝑌 → ((II ×t II) ↾t (𝑈 × {𝑤})) = ((II ×t II) ↾t (𝑈 × {𝑌})))
6665oveq1d 7368 . . . . . . . . . . 11 (𝑤 = 𝑌 → (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) = (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶))
6764, 66eleq12d 2822 . . . . . . . . . 10 (𝑤 = 𝑌 → ((𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶)))
6867rspcev 3579 . . . . . . . . 9 ((𝑌𝑉 ∧ (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶)) → ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶))
6917, 61, 68syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶))
70 cvmlift2lem11.5 . . . . . . . . 9 (𝜑 → (∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)))
7170imp 406 . . . . . . . 8 ((𝜑 ∧ ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶)) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
7269, 71syldan 591 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
7372adantr 480 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
747adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑍𝑉)
7574snssd 4763 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑍} ⊆ 𝑉)
76 xpss2 5643 . . . . . . . . 9 ({𝑍} ⊆ 𝑉 → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉))
7775, 76syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉))
78 iitop 24789 . . . . . . . . . 10 II ∈ Top
7978, 78txtopi 23493 . . . . . . . . 9 (II ×t II) ∈ Top
80 xpss12 5638 . . . . . . . . . 10 ((𝑈 ⊆ (0[,]1) ∧ 𝑉 ⊆ (0[,]1)) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
816, 30, 80syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
8248restuni 23065 . . . . . . . . 9 (((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1))) → (𝑈 × 𝑉) = ((II ×t II) ↾t (𝑈 × 𝑉)))
8379, 81, 82sylancr 587 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) = ((II ×t II) ↾t (𝑈 × 𝑉)))
8477, 83sseqtrd 3974 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((II ×t II) ↾t (𝑈 × 𝑉)))
8584sselda 3937 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝑧 ((II ×t II) ↾t (𝑈 × 𝑉)))
86 eqid 2729 . . . . . . 7 ((II ×t II) ↾t (𝑈 × 𝑉)) = ((II ×t II) ↾t (𝑈 × 𝑉))
8786cncnpi 23181 . . . . . 6 (((𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶) ∧ 𝑧 ((II ×t II) ↾t (𝑈 × 𝑉))) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧))
8873, 85, 87syl2anc 584 . . . . 5 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧))
8979a1i 11 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (II ×t II) ∈ Top)
9081adantr 480 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
9178a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → II ∈ Top)
92 txopn 23505 . . . . . . . . . 10 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑈 ∈ II ∧ 𝑉 ∈ II)) → (𝑈 × 𝑉) ∈ (II ×t II))
9391, 91, 2, 27, 92syl22anc 838 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) ∈ (II ×t II))
94 isopn3i 22985 . . . . . . . . 9 (((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ∈ (II ×t II)) → ((int‘(II ×t II))‘(𝑈 × 𝑉)) = (𝑈 × 𝑉))
9579, 93, 94sylancr 587 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((int‘(II ×t II))‘(𝑈 × 𝑉)) = (𝑈 × 𝑉))
9677, 95sseqtrrd 3975 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((int‘(II ×t II))‘(𝑈 × 𝑉)))
9796sselda 3937 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝑧 ∈ ((int‘(II ×t II))‘(𝑈 × 𝑉)))
9825ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
9948, 18cnprest 23192 . . . . . 6 ((((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1))) ∧ (𝑧 ∈ ((int‘(II ×t II))‘(𝑈 × 𝑉)) ∧ 𝐾:((0[,]1) × (0[,]1))⟶𝐵)) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧) ↔ (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧)))
10089, 90, 97, 98, 99syl22anc 838 . . . . 5 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧) ↔ (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧)))
10188, 100mpbird 257 . . . 4 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
10215, 101ssrabdv 4027 . . 3 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)})
103102, 39sseqtrrdi 3979 . 2 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ 𝑀)
104103ex 412 1 (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  wss 3905  {csn 4579   cuni 4861  cmpt 5176   × cxp 5621  cres 5625  ccom 5627  wf 6482  cfv 6486  crio 7309  (class class class)co 7353  cmpo 7355  0cc0 11028  1c1 11029  [,]cicc 13269  t crest 17342  Topctop 22796  TopOnctopon 22813  intcnt 22920   Cn ccn 23127   CnP ccnp 23128   ×t ctx 23463  IIcii 24784   CovMap ccvm 35227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-ec 8634  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-cn 23130  df-cnp 23131  df-cmp 23290  df-conn 23315  df-lly 23369  df-nlly 23370  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-ii 24786  df-cncf 24787  df-htpy 24885  df-phtpy 24886  df-phtpc 24907  df-pconn 35193  df-sconn 35194  df-cvm 35228
This theorem is referenced by:  cvmlift2lem12  35286
  Copyright terms: Public domain W3C validator