Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem11 Structured version   Visualization version   GIF version

Theorem cvmlift2lem11 35281
Description: Lemma for cvmlift2 35284. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2.m 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
cvmlift2lem11.1 (𝜑𝑈 ∈ II)
cvmlift2lem11.2 (𝜑𝑉 ∈ II)
cvmlift2lem11.3 (𝜑𝑌𝑉)
cvmlift2lem11.4 (𝜑𝑍𝑉)
cvmlift2lem11.5 (𝜑 → (∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)))
Assertion
Ref Expression
cvmlift2lem11 (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀))
Distinct variable groups:   𝑤,𝑓,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑤,𝑥,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑓,𝐽,𝑤,𝑥,𝑦,𝑧   𝑤,𝑈,𝑧   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧   𝑤,𝑉   𝑓,𝐻,𝑤,𝑥,𝑦,𝑧   𝑧,𝑍   𝐶,𝑓,𝑤,𝑥,𝑦,𝑧   𝑃,𝑓,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑓,𝑌,𝑤,𝑥,𝑦,𝑧   𝑓,𝐾,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑓)   𝑃(𝑤)   𝑈(𝑥,𝑦,𝑓)   𝑀(𝑤,𝑓)   𝑉(𝑥,𝑦,𝑧,𝑓)   𝑍(𝑥,𝑦,𝑤,𝑓)

Proof of Theorem cvmlift2lem11
StepHypRef Expression
1 cvmlift2lem11.1 . . . . . . 7 (𝜑𝑈 ∈ II)
21adantr 480 . . . . . 6 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑈 ∈ II)
3 elssuni 4961 . . . . . . 7 (𝑈 ∈ II → 𝑈 II)
4 iiuni 24926 . . . . . . 7 (0[,]1) = II
53, 4sseqtrrdi 4060 . . . . . 6 (𝑈 ∈ II → 𝑈 ⊆ (0[,]1))
62, 5syl 17 . . . . 5 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑈 ⊆ (0[,]1))
7 cvmlift2lem11.4 . . . . . . . 8 (𝜑𝑍𝑉)
8 cvmlift2lem11.2 . . . . . . . 8 (𝜑𝑉 ∈ II)
9 elunii 4936 . . . . . . . . 9 ((𝑍𝑉𝑉 ∈ II) → 𝑍 II)
109, 4eleqtrrdi 2855 . . . . . . . 8 ((𝑍𝑉𝑉 ∈ II) → 𝑍 ∈ (0[,]1))
117, 8, 10syl2anc 583 . . . . . . 7 (𝜑𝑍 ∈ (0[,]1))
1211adantr 480 . . . . . 6 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑍 ∈ (0[,]1))
1312snssd 4834 . . . . 5 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑍} ⊆ (0[,]1))
14 xpss12 5715 . . . . 5 ((𝑈 ⊆ (0[,]1) ∧ {𝑍} ⊆ (0[,]1)) → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
156, 13, 14syl2anc 583 . . . 4 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
16 cvmlift2lem11.3 . . . . . . . . . 10 (𝜑𝑌𝑉)
1716adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑌𝑉)
18 cvmlift2.b . . . . . . . . . . . . 13 𝐵 = 𝐶
19 cvmlift2.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
20 cvmlift2.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
21 cvmlift2.p . . . . . . . . . . . . 13 (𝜑𝑃𝐵)
22 cvmlift2.i . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑃) = (0𝐺0))
23 cvmlift2.h . . . . . . . . . . . . 13 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
24 cvmlift2.k . . . . . . . . . . . . 13 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
2518, 19, 20, 21, 22, 23, 24cvmlift2lem5 35275 . . . . . . . . . . . 12 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
2625adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
278adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑉 ∈ II)
28 elssuni 4961 . . . . . . . . . . . . . . . 16 (𝑉 ∈ II → 𝑉 II)
2928, 4sseqtrrdi 4060 . . . . . . . . . . . . . . 15 (𝑉 ∈ II → 𝑉 ⊆ (0[,]1))
3027, 29syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑉 ⊆ (0[,]1))
3130, 17sseldd 4009 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑌 ∈ (0[,]1))
3231snssd 4834 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑌} ⊆ (0[,]1))
33 xpss12 5715 . . . . . . . . . . . 12 ((𝑈 ⊆ (0[,]1) ∧ {𝑌} ⊆ (0[,]1)) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
346, 32, 33syl2anc 583 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
3526, 34fssresd 6788 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵)
3634adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
37 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → 𝑧 ∈ (𝑈 × {𝑌}))
38 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ 𝑀)
39 cvmlift2.m . . . . . . . . . . . . . . 15 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
4038, 39sseqtrdi 4059 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)})
41 ssrab 4096 . . . . . . . . . . . . . . 15 ((𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} ↔ ((𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)) ∧ ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)))
4241simprbi 496 . . . . . . . . . . . . . 14 ((𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} → ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
4340, 42syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
4443r19.21bi 3257 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
45 iitopon 24924 . . . . . . . . . . . . . . 15 II ∈ (TopOn‘(0[,]1))
46 txtopon 23620 . . . . . . . . . . . . . . 15 ((II ∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
4745, 45, 46mp2an 691 . . . . . . . . . . . . . 14 (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1)))
4847toponunii 22943 . . . . . . . . . . . . 13 ((0[,]1) × (0[,]1)) = (II ×t II)
4948cnpresti 23317 . . . . . . . . . . . 12 (((𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)) ∧ 𝑧 ∈ (𝑈 × {𝑌}) ∧ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
5036, 37, 44, 49syl3anc 1371 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
5150ralrimiva 3152 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
52 resttopon 23190 . . . . . . . . . . . 12 (((II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧ (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1))) → ((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})))
5347, 34, 52sylancr 586 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})))
54 cvmtop1 35228 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
5519, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Top)
5655adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐶 ∈ Top)
5718toptopon 22944 . . . . . . . . . . . 12 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
5856, 57sylib 218 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐶 ∈ (TopOn‘𝐵))
59 cncnp 23309 . . . . . . . . . . 11 ((((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})) ∧ 𝐶 ∈ (TopOn‘𝐵)) → ((𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶) ↔ ((𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵 ∧ ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))))
6053, 58, 59syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶) ↔ ((𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵 ∧ ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))))
6135, 51, 60mpbir2and 712 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶))
62 sneq 4658 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → {𝑤} = {𝑌})
6362xpeq2d 5730 . . . . . . . . . . . 12 (𝑤 = 𝑌 → (𝑈 × {𝑤}) = (𝑈 × {𝑌}))
6463reseq2d 6009 . . . . . . . . . . 11 (𝑤 = 𝑌 → (𝐾 ↾ (𝑈 × {𝑤})) = (𝐾 ↾ (𝑈 × {𝑌})))
6563oveq2d 7464 . . . . . . . . . . . 12 (𝑤 = 𝑌 → ((II ×t II) ↾t (𝑈 × {𝑤})) = ((II ×t II) ↾t (𝑈 × {𝑌})))
6665oveq1d 7463 . . . . . . . . . . 11 (𝑤 = 𝑌 → (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) = (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶))
6764, 66eleq12d 2838 . . . . . . . . . 10 (𝑤 = 𝑌 → ((𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶)))
6867rspcev 3635 . . . . . . . . 9 ((𝑌𝑉 ∧ (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶)) → ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶))
6917, 61, 68syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶))
70 cvmlift2lem11.5 . . . . . . . . 9 (𝜑 → (∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)))
7170imp 406 . . . . . . . 8 ((𝜑 ∧ ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶)) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
7269, 71syldan 590 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
7372adantr 480 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
747adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑍𝑉)
7574snssd 4834 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑍} ⊆ 𝑉)
76 xpss2 5720 . . . . . . . . 9 ({𝑍} ⊆ 𝑉 → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉))
7775, 76syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉))
78 iitop 24925 . . . . . . . . . 10 II ∈ Top
7978, 78txtopi 23619 . . . . . . . . 9 (II ×t II) ∈ Top
80 xpss12 5715 . . . . . . . . . 10 ((𝑈 ⊆ (0[,]1) ∧ 𝑉 ⊆ (0[,]1)) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
816, 30, 80syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
8248restuni 23191 . . . . . . . . 9 (((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1))) → (𝑈 × 𝑉) = ((II ×t II) ↾t (𝑈 × 𝑉)))
8379, 81, 82sylancr 586 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) = ((II ×t II) ↾t (𝑈 × 𝑉)))
8477, 83sseqtrd 4049 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((II ×t II) ↾t (𝑈 × 𝑉)))
8584sselda 4008 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝑧 ((II ×t II) ↾t (𝑈 × 𝑉)))
86 eqid 2740 . . . . . . 7 ((II ×t II) ↾t (𝑈 × 𝑉)) = ((II ×t II) ↾t (𝑈 × 𝑉))
8786cncnpi 23307 . . . . . 6 (((𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶) ∧ 𝑧 ((II ×t II) ↾t (𝑈 × 𝑉))) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧))
8873, 85, 87syl2anc 583 . . . . 5 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧))
8979a1i 11 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (II ×t II) ∈ Top)
9081adantr 480 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
9178a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → II ∈ Top)
92 txopn 23631 . . . . . . . . . 10 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑈 ∈ II ∧ 𝑉 ∈ II)) → (𝑈 × 𝑉) ∈ (II ×t II))
9391, 91, 2, 27, 92syl22anc 838 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) ∈ (II ×t II))
94 isopn3i 23111 . . . . . . . . 9 (((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ∈ (II ×t II)) → ((int‘(II ×t II))‘(𝑈 × 𝑉)) = (𝑈 × 𝑉))
9579, 93, 94sylancr 586 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((int‘(II ×t II))‘(𝑈 × 𝑉)) = (𝑈 × 𝑉))
9677, 95sseqtrrd 4050 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((int‘(II ×t II))‘(𝑈 × 𝑉)))
9796sselda 4008 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝑧 ∈ ((int‘(II ×t II))‘(𝑈 × 𝑉)))
9825ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
9948, 18cnprest 23318 . . . . . 6 ((((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1))) ∧ (𝑧 ∈ ((int‘(II ×t II))‘(𝑈 × 𝑉)) ∧ 𝐾:((0[,]1) × (0[,]1))⟶𝐵)) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧) ↔ (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧)))
10089, 90, 97, 98, 99syl22anc 838 . . . . 5 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧) ↔ (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧)))
10188, 100mpbird 257 . . . 4 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
10215, 101ssrabdv 4097 . . 3 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)})
103102, 39sseqtrrdi 4060 . 2 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ 𝑀)
104103ex 412 1 (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  wss 3976  {csn 4648   cuni 4931  cmpt 5249   × cxp 5698  cres 5702  ccom 5704  wf 6569  cfv 6573  crio 7403  (class class class)co 7448  cmpo 7450  0cc0 11184  1c1 11185  [,]cicc 13410  t crest 17480  Topctop 22920  TopOnctopon 22937  intcnt 23046   Cn ccn 23253   CnP ccnp 23254   ×t ctx 23589  IIcii 24920   CovMap ccvm 35223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-cmp 23416  df-conn 23441  df-lly 23495  df-nlly 23496  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-ii 24922  df-cncf 24923  df-htpy 25021  df-phtpy 25022  df-phtpc 25043  df-pconn 35189  df-sconn 35190  df-cvm 35224
This theorem is referenced by:  cvmlift2lem12  35282
  Copyright terms: Public domain W3C validator