Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem11 Structured version   Visualization version   GIF version

Theorem cvmlift2lem11 33175
Description: Lemma for cvmlift2 33178. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2.m 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
cvmlift2lem11.1 (𝜑𝑈 ∈ II)
cvmlift2lem11.2 (𝜑𝑉 ∈ II)
cvmlift2lem11.3 (𝜑𝑌𝑉)
cvmlift2lem11.4 (𝜑𝑍𝑉)
cvmlift2lem11.5 (𝜑 → (∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)))
Assertion
Ref Expression
cvmlift2lem11 (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀))
Distinct variable groups:   𝑤,𝑓,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑤,𝑥,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑓,𝐽,𝑤,𝑥,𝑦,𝑧   𝑤,𝑈,𝑧   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧   𝑤,𝑉   𝑓,𝐻,𝑤,𝑥,𝑦,𝑧   𝑧,𝑍   𝐶,𝑓,𝑤,𝑥,𝑦,𝑧   𝑃,𝑓,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑓,𝑌,𝑤,𝑥,𝑦,𝑧   𝑓,𝐾,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑓)   𝑃(𝑤)   𝑈(𝑥,𝑦,𝑓)   𝑀(𝑤,𝑓)   𝑉(𝑥,𝑦,𝑧,𝑓)   𝑍(𝑥,𝑦,𝑤,𝑓)

Proof of Theorem cvmlift2lem11
StepHypRef Expression
1 cvmlift2lem11.1 . . . . . . 7 (𝜑𝑈 ∈ II)
21adantr 480 . . . . . 6 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑈 ∈ II)
3 elssuni 4868 . . . . . . 7 (𝑈 ∈ II → 𝑈 II)
4 iiuni 23950 . . . . . . 7 (0[,]1) = II
53, 4sseqtrrdi 3968 . . . . . 6 (𝑈 ∈ II → 𝑈 ⊆ (0[,]1))
62, 5syl 17 . . . . 5 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑈 ⊆ (0[,]1))
7 cvmlift2lem11.4 . . . . . . . 8 (𝜑𝑍𝑉)
8 cvmlift2lem11.2 . . . . . . . 8 (𝜑𝑉 ∈ II)
9 elunii 4841 . . . . . . . . 9 ((𝑍𝑉𝑉 ∈ II) → 𝑍 II)
109, 4eleqtrrdi 2850 . . . . . . . 8 ((𝑍𝑉𝑉 ∈ II) → 𝑍 ∈ (0[,]1))
117, 8, 10syl2anc 583 . . . . . . 7 (𝜑𝑍 ∈ (0[,]1))
1211adantr 480 . . . . . 6 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑍 ∈ (0[,]1))
1312snssd 4739 . . . . 5 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑍} ⊆ (0[,]1))
14 xpss12 5595 . . . . 5 ((𝑈 ⊆ (0[,]1) ∧ {𝑍} ⊆ (0[,]1)) → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
156, 13, 14syl2anc 583 . . . 4 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
16 cvmlift2lem11.3 . . . . . . . . . 10 (𝜑𝑌𝑉)
1716adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑌𝑉)
18 cvmlift2.b . . . . . . . . . . . . 13 𝐵 = 𝐶
19 cvmlift2.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
20 cvmlift2.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
21 cvmlift2.p . . . . . . . . . . . . 13 (𝜑𝑃𝐵)
22 cvmlift2.i . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑃) = (0𝐺0))
23 cvmlift2.h . . . . . . . . . . . . 13 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
24 cvmlift2.k . . . . . . . . . . . . 13 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
2518, 19, 20, 21, 22, 23, 24cvmlift2lem5 33169 . . . . . . . . . . . 12 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
2625adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
278adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑉 ∈ II)
28 elssuni 4868 . . . . . . . . . . . . . . . 16 (𝑉 ∈ II → 𝑉 II)
2928, 4sseqtrrdi 3968 . . . . . . . . . . . . . . 15 (𝑉 ∈ II → 𝑉 ⊆ (0[,]1))
3027, 29syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑉 ⊆ (0[,]1))
3130, 17sseldd 3918 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑌 ∈ (0[,]1))
3231snssd 4739 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑌} ⊆ (0[,]1))
33 xpss12 5595 . . . . . . . . . . . 12 ((𝑈 ⊆ (0[,]1) ∧ {𝑌} ⊆ (0[,]1)) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
346, 32, 33syl2anc 583 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
3526, 34fssresd 6625 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵)
3634adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
37 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → 𝑧 ∈ (𝑈 × {𝑌}))
38 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ 𝑀)
39 cvmlift2.m . . . . . . . . . . . . . . 15 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
4038, 39sseqtrdi 3967 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)})
41 ssrab 4002 . . . . . . . . . . . . . . 15 ((𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} ↔ ((𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)) ∧ ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)))
4241simprbi 496 . . . . . . . . . . . . . 14 ((𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} → ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
4340, 42syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
4443r19.21bi 3132 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
45 iitopon 23948 . . . . . . . . . . . . . . 15 II ∈ (TopOn‘(0[,]1))
46 txtopon 22650 . . . . . . . . . . . . . . 15 ((II ∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
4745, 45, 46mp2an 688 . . . . . . . . . . . . . 14 (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1)))
4847toponunii 21973 . . . . . . . . . . . . 13 ((0[,]1) × (0[,]1)) = (II ×t II)
4948cnpresti 22347 . . . . . . . . . . . 12 (((𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)) ∧ 𝑧 ∈ (𝑈 × {𝑌}) ∧ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
5036, 37, 44, 49syl3anc 1369 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
5150ralrimiva 3107 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
52 resttopon 22220 . . . . . . . . . . . 12 (((II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧ (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1))) → ((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})))
5347, 34, 52sylancr 586 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})))
54 cvmtop1 33122 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
5519, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Top)
5655adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐶 ∈ Top)
5718toptopon 21974 . . . . . . . . . . . 12 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
5856, 57sylib 217 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐶 ∈ (TopOn‘𝐵))
59 cncnp 22339 . . . . . . . . . . 11 ((((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})) ∧ 𝐶 ∈ (TopOn‘𝐵)) → ((𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶) ↔ ((𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵 ∧ ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))))
6053, 58, 59syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶) ↔ ((𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵 ∧ ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))))
6135, 51, 60mpbir2and 709 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶))
62 sneq 4568 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → {𝑤} = {𝑌})
6362xpeq2d 5610 . . . . . . . . . . . 12 (𝑤 = 𝑌 → (𝑈 × {𝑤}) = (𝑈 × {𝑌}))
6463reseq2d 5880 . . . . . . . . . . 11 (𝑤 = 𝑌 → (𝐾 ↾ (𝑈 × {𝑤})) = (𝐾 ↾ (𝑈 × {𝑌})))
6563oveq2d 7271 . . . . . . . . . . . 12 (𝑤 = 𝑌 → ((II ×t II) ↾t (𝑈 × {𝑤})) = ((II ×t II) ↾t (𝑈 × {𝑌})))
6665oveq1d 7270 . . . . . . . . . . 11 (𝑤 = 𝑌 → (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) = (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶))
6764, 66eleq12d 2833 . . . . . . . . . 10 (𝑤 = 𝑌 → ((𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶)))
6867rspcev 3552 . . . . . . . . 9 ((𝑌𝑉 ∧ (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶)) → ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶))
6917, 61, 68syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶))
70 cvmlift2lem11.5 . . . . . . . . 9 (𝜑 → (∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)))
7170imp 406 . . . . . . . 8 ((𝜑 ∧ ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶)) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
7269, 71syldan 590 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
7372adantr 480 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
747adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑍𝑉)
7574snssd 4739 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑍} ⊆ 𝑉)
76 xpss2 5600 . . . . . . . . 9 ({𝑍} ⊆ 𝑉 → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉))
7775, 76syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉))
78 iitop 23949 . . . . . . . . . 10 II ∈ Top
7978, 78txtopi 22649 . . . . . . . . 9 (II ×t II) ∈ Top
80 xpss12 5595 . . . . . . . . . 10 ((𝑈 ⊆ (0[,]1) ∧ 𝑉 ⊆ (0[,]1)) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
816, 30, 80syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
8248restuni 22221 . . . . . . . . 9 (((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1))) → (𝑈 × 𝑉) = ((II ×t II) ↾t (𝑈 × 𝑉)))
8379, 81, 82sylancr 586 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) = ((II ×t II) ↾t (𝑈 × 𝑉)))
8477, 83sseqtrd 3957 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((II ×t II) ↾t (𝑈 × 𝑉)))
8584sselda 3917 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝑧 ((II ×t II) ↾t (𝑈 × 𝑉)))
86 eqid 2738 . . . . . . 7 ((II ×t II) ↾t (𝑈 × 𝑉)) = ((II ×t II) ↾t (𝑈 × 𝑉))
8786cncnpi 22337 . . . . . 6 (((𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶) ∧ 𝑧 ((II ×t II) ↾t (𝑈 × 𝑉))) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧))
8873, 85, 87syl2anc 583 . . . . 5 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧))
8979a1i 11 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (II ×t II) ∈ Top)
9081adantr 480 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
9178a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → II ∈ Top)
92 txopn 22661 . . . . . . . . . 10 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑈 ∈ II ∧ 𝑉 ∈ II)) → (𝑈 × 𝑉) ∈ (II ×t II))
9391, 91, 2, 27, 92syl22anc 835 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) ∈ (II ×t II))
94 isopn3i 22141 . . . . . . . . 9 (((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ∈ (II ×t II)) → ((int‘(II ×t II))‘(𝑈 × 𝑉)) = (𝑈 × 𝑉))
9579, 93, 94sylancr 586 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((int‘(II ×t II))‘(𝑈 × 𝑉)) = (𝑈 × 𝑉))
9677, 95sseqtrrd 3958 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((int‘(II ×t II))‘(𝑈 × 𝑉)))
9796sselda 3917 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝑧 ∈ ((int‘(II ×t II))‘(𝑈 × 𝑉)))
9825ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
9948, 18cnprest 22348 . . . . . 6 ((((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1))) ∧ (𝑧 ∈ ((int‘(II ×t II))‘(𝑈 × 𝑉)) ∧ 𝐾:((0[,]1) × (0[,]1))⟶𝐵)) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧) ↔ (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧)))
10089, 90, 97, 98, 99syl22anc 835 . . . . 5 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧) ↔ (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧)))
10188, 100mpbird 256 . . . 4 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
10215, 101ssrabdv 4003 . . 3 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)})
103102, 39sseqtrrdi 3968 . 2 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ 𝑀)
104103ex 412 1 (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  wss 3883  {csn 4558   cuni 4836  cmpt 5153   × cxp 5578  cres 5582  ccom 5584  wf 6414  cfv 6418  crio 7211  (class class class)co 7255  cmpo 7257  0cc0 10802  1c1 10803  [,]cicc 13011  t crest 17048  Topctop 21950  TopOnctopon 21967  intcnt 22076   Cn ccn 22283   CnP ccnp 22284   ×t ctx 22619  IIcii 23944   CovMap ccvm 33117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-ec 8458  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-cmp 22446  df-conn 22471  df-lly 22525  df-nlly 22526  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-ii 23946  df-htpy 24039  df-phtpy 24040  df-phtpc 24061  df-pconn 33083  df-sconn 33084  df-cvm 33118
This theorem is referenced by:  cvmlift2lem12  33176
  Copyright terms: Public domain W3C validator