![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004ss2 | Structured version Visualization version GIF version |
Description: The topological simplex of dimension π is a subset of the base set of a real vector space of dimension (π + 1). (Contributed by RP, 29-Mar-2021.) |
Ref | Expression |
---|---|
k0004.a | β’ π΄ = (π β β0 β¦ {π‘ β ((0[,]1) βm (1...(π + 1))) β£ Ξ£π β (1...(π + 1))(π‘βπ) = 1}) |
Ref | Expression |
---|---|
k0004ss2 | β’ (π β β0 β (π΄βπ) β (Baseβ(β^β(1...(π + 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | k0004.a | . . 3 β’ π΄ = (π β β0 β¦ {π‘ β ((0[,]1) βm (1...(π + 1))) β£ Ξ£π β (1...(π + 1))(π‘βπ) = 1}) | |
2 | 1 | k0004ss1 42902 | . 2 β’ (π β β0 β (π΄βπ) β (β βm (1...(π + 1)))) |
3 | ssidd 4006 | . . . 4 β’ (π β β0 β (β βm (1...(π + 1))) β (β βm (1...(π + 1)))) | |
4 | elmapi 8843 | . . . . . 6 β’ (π£ β (β βm (1...(π + 1))) β π£:(1...(π + 1))βΆβ) | |
5 | 4 | adantl 483 | . . . . 5 β’ ((π β β0 β§ π£ β (β βm (1...(π + 1)))) β π£:(1...(π + 1))βΆβ) |
6 | fzfid 13938 | . . . . 5 β’ ((π β β0 β§ π£ β (β βm (1...(π + 1)))) β (1...(π + 1)) β Fin) | |
7 | 0red 11217 | . . . . 5 β’ ((π β β0 β§ π£ β (β βm (1...(π + 1)))) β 0 β β) | |
8 | 5, 6, 7 | fdmfifsupp 9373 | . . . 4 β’ ((π β β0 β§ π£ β (β βm (1...(π + 1)))) β π£ finSupp 0) |
9 | 3, 8 | ssrabdv 4072 | . . 3 β’ (π β β0 β (β βm (1...(π + 1))) β {π£ β (β βm (1...(π + 1))) β£ π£ finSupp 0}) |
10 | ovex 7442 | . . . 4 β’ (1...(π + 1)) β V | |
11 | eqid 2733 | . . . . 5 β’ (β^β(1...(π + 1))) = (β^β(1...(π + 1))) | |
12 | eqid 2733 | . . . . 5 β’ (Baseβ(β^β(1...(π + 1)))) = (Baseβ(β^β(1...(π + 1)))) | |
13 | 11, 12 | rrxbase 24905 | . . . 4 β’ ((1...(π + 1)) β V β (Baseβ(β^β(1...(π + 1)))) = {π£ β (β βm (1...(π + 1))) β£ π£ finSupp 0}) |
14 | 10, 13 | ax-mp 5 | . . 3 β’ (Baseβ(β^β(1...(π + 1)))) = {π£ β (β βm (1...(π + 1))) β£ π£ finSupp 0} |
15 | 9, 14 | sseqtrrdi 4034 | . 2 β’ (π β β0 β (β βm (1...(π + 1))) β (Baseβ(β^β(1...(π + 1))))) |
16 | 2, 15 | sstrd 3993 | 1 β’ (π β β0 β (π΄βπ) β (Baseβ(β^β(1...(π + 1))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 {crab 3433 Vcvv 3475 β wss 3949 class class class wbr 5149 β¦ cmpt 5232 βΆwf 6540 βcfv 6544 (class class class)co 7409 βm cmap 8820 finSupp cfsupp 9361 βcr 11109 0cc0 11110 1c1 11111 + caddc 11113 β0cn0 12472 [,]cicc 13327 ...cfz 13484 Ξ£csu 15632 Basecbs 17144 β^crrx 24900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-rp 12975 df-icc 13331 df-fz 13485 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-sum 15633 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-0g 17387 df-prds 17393 df-pws 17395 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-subg 19003 df-cmn 19650 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-invr 20202 df-dvr 20215 df-subrg 20317 df-drng 20359 df-field 20360 df-sra 20785 df-rgmod 20786 df-cnfld 20945 df-refld 21158 df-dsmm 21287 df-frlm 21302 df-tng 24093 df-tcph 24686 df-rrx 24902 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |