| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004ss2 | Structured version Visualization version GIF version | ||
| Description: The topological simplex of dimension 𝑁 is a subset of the base set of a real vector space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
| Ref | Expression |
|---|---|
| k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
| Ref | Expression |
|---|---|
| k0004ss2 | ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | k0004.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
| 2 | 1 | k0004ss1 44109 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) |
| 3 | ssidd 3989 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) | |
| 4 | elmapi 8872 | . . . . . 6 ⊢ (𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) → 𝑣:(1...(𝑁 + 1))⟶ℝ) | |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 𝑣:(1...(𝑁 + 1))⟶ℝ) |
| 6 | fzfid 13997 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → (1...(𝑁 + 1)) ∈ Fin) | |
| 7 | 0red 11247 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 0 ∈ ℝ) | |
| 8 | 5, 6, 7 | fdmfifsupp 9398 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 𝑣 finSupp 0) |
| 9 | 3, 8 | ssrabdv 4056 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0}) |
| 10 | ovex 7447 | . . . 4 ⊢ (1...(𝑁 + 1)) ∈ V | |
| 11 | eqid 2734 | . . . . 5 ⊢ (ℝ^‘(1...(𝑁 + 1))) = (ℝ^‘(1...(𝑁 + 1))) | |
| 12 | eqid 2734 | . . . . 5 ⊢ (Base‘(ℝ^‘(1...(𝑁 + 1)))) = (Base‘(ℝ^‘(1...(𝑁 + 1)))) | |
| 13 | 11, 12 | rrxbase 25377 | . . . 4 ⊢ ((1...(𝑁 + 1)) ∈ V → (Base‘(ℝ^‘(1...(𝑁 + 1)))) = {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0}) |
| 14 | 10, 13 | ax-mp 5 | . . 3 ⊢ (Base‘(ℝ^‘(1...(𝑁 + 1)))) = {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0} |
| 15 | 9, 14 | sseqtrrdi 4007 | . 2 ⊢ (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1))))) |
| 16 | 2, 15 | sstrd 3976 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3420 Vcvv 3464 ⊆ wss 3933 class class class wbr 5125 ↦ cmpt 5207 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8849 finSupp cfsupp 9384 ℝcr 11137 0cc0 11138 1c1 11139 + caddc 11141 ℕ0cn0 12510 [,]cicc 13373 ...cfz 13530 Σcsu 15705 Basecbs 17230 ℝ^crrx 25372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-tpos 8234 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-rp 13018 df-icc 13377 df-fz 13531 df-seq 14026 df-exp 14086 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-sum 15706 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-starv 17292 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-hom 17301 df-cco 17302 df-0g 17462 df-prds 17468 df-pws 17470 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 df-minusg 18929 df-subg 19115 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-cring 20206 df-oppr 20307 df-dvdsr 20330 df-unit 20331 df-invr 20361 df-dvr 20374 df-subrng 20519 df-subrg 20543 df-drng 20704 df-field 20705 df-sra 21145 df-rgmod 21146 df-cnfld 21332 df-refld 21590 df-dsmm 21719 df-frlm 21734 df-tng 24560 df-tcph 25158 df-rrx 25374 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |