Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004ss2 Structured version   Visualization version   GIF version

Theorem k0004ss2 44255
Description: The topological simplex of dimension 𝑁 is a subset of the base set of a real vector space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.)
Hypothesis
Ref Expression
k0004.a 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
Assertion
Ref Expression
k0004ss2 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1)))))
Distinct variable groups:   𝑘,𝑛   𝑡,𝑛   𝑘,𝑁   𝑡,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑡,𝑘,𝑛)

Proof of Theorem k0004ss2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 k0004.a . . 3 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
21k0004ss1 44254 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1))))
3 ssidd 3953 . . . 4 (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1))))
4 elmapi 8773 . . . . . 6 (𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) → 𝑣:(1...(𝑁 + 1))⟶ℝ)
54adantl 481 . . . . 5 ((𝑁 ∈ ℕ0𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 𝑣:(1...(𝑁 + 1))⟶ℝ)
6 fzfid 13880 . . . . 5 ((𝑁 ∈ ℕ0𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → (1...(𝑁 + 1)) ∈ Fin)
7 0red 11115 . . . . 5 ((𝑁 ∈ ℕ0𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 0 ∈ ℝ)
85, 6, 7fdmfifsupp 9259 . . . 4 ((𝑁 ∈ ℕ0𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 𝑣 finSupp 0)
93, 8ssrabdv 4019 . . 3 (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0})
10 ovex 7379 . . . 4 (1...(𝑁 + 1)) ∈ V
11 eqid 2731 . . . . 5 (ℝ^‘(1...(𝑁 + 1))) = (ℝ^‘(1...(𝑁 + 1)))
12 eqid 2731 . . . . 5 (Base‘(ℝ^‘(1...(𝑁 + 1)))) = (Base‘(ℝ^‘(1...(𝑁 + 1))))
1311, 12rrxbase 25315 . . . 4 ((1...(𝑁 + 1)) ∈ V → (Base‘(ℝ^‘(1...(𝑁 + 1)))) = {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0})
1410, 13ax-mp 5 . . 3 (Base‘(ℝ^‘(1...(𝑁 + 1)))) = {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0}
159, 14sseqtrrdi 3971 . 2 (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1)))))
162, 15sstrd 3940 1 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3897   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750   finSupp cfsupp 9245  cr 11005  0cc0 11006  1c1 11007   + caddc 11009  0cn0 12381  [,]cicc 13248  ...cfz 13407  Σcsu 15593  Basecbs 17120  ℝ^crrx 25310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-icc 13252  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-subg 19036  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-subrng 20461  df-subrg 20485  df-drng 20646  df-field 20647  df-sra 21107  df-rgmod 21108  df-cnfld 21292  df-refld 21542  df-dsmm 21669  df-frlm 21684  df-tng 24499  df-tcph 25096  df-rrx 25312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator