Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004ss2 | Structured version Visualization version GIF version |
Description: The topological simplex of dimension 𝑁 is a subset of the base set of a real vector space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
Ref | Expression |
---|---|
k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
Ref | Expression |
---|---|
k0004ss2 | ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | k0004.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
2 | 1 | k0004ss1 41446 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) |
3 | ssidd 3929 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) | |
4 | elmapi 8535 | . . . . . 6 ⊢ (𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) → 𝑣:(1...(𝑁 + 1))⟶ℝ) | |
5 | 4 | adantl 485 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 𝑣:(1...(𝑁 + 1))⟶ℝ) |
6 | fzfid 13551 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → (1...(𝑁 + 1)) ∈ Fin) | |
7 | 0red 10841 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 0 ∈ ℝ) | |
8 | 5, 6, 7 | fdmfifsupp 9000 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 𝑣 finSupp 0) |
9 | 3, 8 | ssrabdv 3992 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0}) |
10 | ovex 7251 | . . . 4 ⊢ (1...(𝑁 + 1)) ∈ V | |
11 | eqid 2737 | . . . . 5 ⊢ (ℝ^‘(1...(𝑁 + 1))) = (ℝ^‘(1...(𝑁 + 1))) | |
12 | eqid 2737 | . . . . 5 ⊢ (Base‘(ℝ^‘(1...(𝑁 + 1)))) = (Base‘(ℝ^‘(1...(𝑁 + 1)))) | |
13 | 11, 12 | rrxbase 24290 | . . . 4 ⊢ ((1...(𝑁 + 1)) ∈ V → (Base‘(ℝ^‘(1...(𝑁 + 1)))) = {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0}) |
14 | 10, 13 | ax-mp 5 | . . 3 ⊢ (Base‘(ℝ^‘(1...(𝑁 + 1)))) = {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0} |
15 | 9, 14 | sseqtrrdi 3957 | . 2 ⊢ (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1))))) |
16 | 2, 15 | sstrd 3916 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {crab 3065 Vcvv 3413 ⊆ wss 3871 class class class wbr 5058 ↦ cmpt 5140 ⟶wf 6381 ‘cfv 6385 (class class class)co 7218 ↑m cmap 8513 finSupp cfsupp 8990 ℝcr 10733 0cc0 10734 1c1 10735 + caddc 10737 ℕ0cn0 12095 [,]cicc 12943 ...cfz 13100 Σcsu 15254 Basecbs 16765 ℝ^crrx 24285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 ax-pre-sup 10812 ax-addf 10813 ax-mulf 10814 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-om 7650 df-1st 7766 df-2nd 7767 df-supp 7909 df-tpos 7973 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-1o 8207 df-er 8396 df-map 8515 df-ixp 8584 df-en 8632 df-dom 8633 df-sdom 8634 df-fin 8635 df-fsupp 8991 df-sup 9063 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-div 11495 df-nn 11836 df-2 11898 df-3 11899 df-4 11900 df-5 11901 df-6 11902 df-7 11903 df-8 11904 df-9 11905 df-n0 12096 df-z 12182 df-dec 12299 df-uz 12444 df-rp 12592 df-icc 12947 df-fz 13101 df-seq 13580 df-exp 13641 df-cj 14667 df-re 14668 df-im 14669 df-sqrt 14803 df-abs 14804 df-sum 15255 df-struct 16705 df-sets 16722 df-slot 16740 df-ndx 16750 df-base 16766 df-ress 16790 df-plusg 16820 df-mulr 16821 df-starv 16822 df-sca 16823 df-vsca 16824 df-ip 16825 df-tset 16826 df-ple 16827 df-ds 16829 df-unif 16830 df-hom 16831 df-cco 16832 df-0g 16951 df-prds 16957 df-pws 16959 df-mgm 18119 df-sgrp 18168 df-mnd 18179 df-grp 18373 df-minusg 18374 df-subg 18545 df-cmn 19177 df-mgp 19510 df-ur 19522 df-ring 19569 df-cring 19570 df-oppr 19646 df-dvdsr 19664 df-unit 19665 df-invr 19695 df-dvr 19706 df-drng 19774 df-field 19775 df-subrg 19803 df-sra 20214 df-rgmod 20215 df-cnfld 20369 df-refld 20572 df-dsmm 20699 df-frlm 20714 df-tng 23487 df-tcph 24071 df-rrx 24287 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |