![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004ss2 | Structured version Visualization version GIF version |
Description: The topological simplex of dimension 𝑁 is a subset of the base set of a real vector space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
Ref | Expression |
---|---|
k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
Ref | Expression |
---|---|
k0004ss2 | ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | k0004.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
2 | 1 | k0004ss1 43368 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) |
3 | ssidd 4005 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) | |
4 | elmapi 8849 | . . . . . 6 ⊢ (𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) → 𝑣:(1...(𝑁 + 1))⟶ℝ) | |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 𝑣:(1...(𝑁 + 1))⟶ℝ) |
6 | fzfid 13945 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → (1...(𝑁 + 1)) ∈ Fin) | |
7 | 0red 11224 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 0 ∈ ℝ) | |
8 | 5, 6, 7 | fdmfifsupp 9379 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 𝑣 finSupp 0) |
9 | 3, 8 | ssrabdv 4071 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0}) |
10 | ovex 7445 | . . . 4 ⊢ (1...(𝑁 + 1)) ∈ V | |
11 | eqid 2731 | . . . . 5 ⊢ (ℝ^‘(1...(𝑁 + 1))) = (ℝ^‘(1...(𝑁 + 1))) | |
12 | eqid 2731 | . . . . 5 ⊢ (Base‘(ℝ^‘(1...(𝑁 + 1)))) = (Base‘(ℝ^‘(1...(𝑁 + 1)))) | |
13 | 11, 12 | rrxbase 25237 | . . . 4 ⊢ ((1...(𝑁 + 1)) ∈ V → (Base‘(ℝ^‘(1...(𝑁 + 1)))) = {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0}) |
14 | 10, 13 | ax-mp 5 | . . 3 ⊢ (Base‘(ℝ^‘(1...(𝑁 + 1)))) = {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0} |
15 | 9, 14 | sseqtrrdi 4033 | . 2 ⊢ (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1))))) |
16 | 2, 15 | sstrd 3992 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {crab 3431 Vcvv 3473 ⊆ wss 3948 class class class wbr 5148 ↦ cmpt 5231 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 ↑m cmap 8826 finSupp cfsupp 9367 ℝcr 11115 0cc0 11116 1c1 11117 + caddc 11119 ℕ0cn0 12479 [,]cicc 13334 ...cfz 13491 Σcsu 15639 Basecbs 17151 ℝ^crrx 25232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-rp 12982 df-icc 13338 df-fz 13492 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-sum 15640 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-0g 17394 df-prds 17400 df-pws 17402 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-subg 19046 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-cring 20137 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-subrng 20442 df-subrg 20467 df-drng 20585 df-field 20586 df-sra 21017 df-rgmod 21018 df-cnfld 21235 df-refld 21469 df-dsmm 21598 df-frlm 21613 df-tng 24414 df-tcph 25018 df-rrx 25234 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |