Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004ss2 Structured version   Visualization version   GIF version

Theorem k0004ss2 40380
Description: The topological simplex of dimension 𝑁 is a subset of the base set of a real vector space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.)
Hypothesis
Ref Expression
k0004.a 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
Assertion
Ref Expression
k0004ss2 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1)))))
Distinct variable groups:   𝑘,𝑛   𝑡,𝑛   𝑘,𝑁   𝑡,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑡,𝑘,𝑛)

Proof of Theorem k0004ss2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 k0004.a . . 3 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
21k0004ss1 40379 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1))))
3 ssidd 3987 . . . 4 (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1))))
4 elmapi 8417 . . . . . 6 (𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) → 𝑣:(1...(𝑁 + 1))⟶ℝ)
54adantl 482 . . . . 5 ((𝑁 ∈ ℕ0𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 𝑣:(1...(𝑁 + 1))⟶ℝ)
6 fzfid 13329 . . . . 5 ((𝑁 ∈ ℕ0𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → (1...(𝑁 + 1)) ∈ Fin)
7 0red 10632 . . . . 5 ((𝑁 ∈ ℕ0𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 0 ∈ ℝ)
85, 6, 7fdmfifsupp 8831 . . . 4 ((𝑁 ∈ ℕ0𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1)))) → 𝑣 finSupp 0)
93, 8ssrabdv 4047 . . 3 (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0})
10 ovex 7178 . . . 4 (1...(𝑁 + 1)) ∈ V
11 eqid 2818 . . . . 5 (ℝ^‘(1...(𝑁 + 1))) = (ℝ^‘(1...(𝑁 + 1)))
12 eqid 2818 . . . . 5 (Base‘(ℝ^‘(1...(𝑁 + 1)))) = (Base‘(ℝ^‘(1...(𝑁 + 1))))
1311, 12rrxbase 23918 . . . 4 ((1...(𝑁 + 1)) ∈ V → (Base‘(ℝ^‘(1...(𝑁 + 1)))) = {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0})
1410, 13ax-mp 5 . . 3 (Base‘(ℝ^‘(1...(𝑁 + 1)))) = {𝑣 ∈ (ℝ ↑m (1...(𝑁 + 1))) ∣ 𝑣 finSupp 0}
159, 14sseqtrrdi 4015 . 2 (𝑁 ∈ ℕ0 → (ℝ ↑m (1...(𝑁 + 1))) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1)))))
162, 15sstrd 3974 1 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  {crab 3139  Vcvv 3492  wss 3933   class class class wbr 5057  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7145  m cmap 8395   finSupp cfsupp 8821  cr 10524  0cc0 10525  1c1 10526   + caddc 10528  0cn0 11885  [,]cicc 12729  ...cfz 12880  Σcsu 15030  Basecbs 16471  ℝ^crrx 23913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-icc 12733  df-fz 12881  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-sum 15031  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-0g 16703  df-prds 16709  df-pws 16711  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-subg 18214  df-cmn 18837  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-dvr 19362  df-drng 19433  df-field 19434  df-subrg 19462  df-sra 19873  df-rgmod 19874  df-cnfld 20474  df-refld 20677  df-dsmm 20804  df-frlm 20819  df-tng 23121  df-tcph 23700  df-rrx 23915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator