MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1eu Structured version   Visualization version   GIF version

Theorem ablfac1eu 18680
Description: The factorization of ablfac1b 18677 is unique, in that any other factorization into prime power factors (even if the exponents are different) must be equal to 𝑆. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1c.d 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac1.2 (𝜑𝐷𝐴)
ablfac1eu.1 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
ablfac1eu.2 (𝜑 → dom 𝑇 = 𝐴)
ablfac1eu.3 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
ablfac1eu.4 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
Assertion
Ref Expression
ablfac1eu (𝜑𝑇 = 𝑆)
Distinct variable groups:   𝑞,𝑝,𝑤,𝑥,𝐵   𝐷,𝑝,𝑞,𝑥   𝜑,𝑝,𝑞,𝑤,𝑥   𝑆,𝑞   𝐴,𝑝,𝑞,𝑥   𝑂,𝑝,𝑞,𝑥   𝑇,𝑞,𝑥   𝐺,𝑝,𝑞,𝑥
Allowed substitution hints:   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑞,𝑝)   𝐷(𝑤)   𝑆(𝑥,𝑤,𝑝)   𝑇(𝑤,𝑝)   𝐺(𝑤)   𝑂(𝑤)

Proof of Theorem ablfac1eu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ablfac1eu.1 . . . . 5 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
21simpld 482 . . . 4 (𝜑𝐺dom DProd 𝑇)
3 ablfac1eu.2 . . . 4 (𝜑 → dom 𝑇 = 𝐴)
42, 3dprdf2 18614 . . 3 (𝜑𝑇:𝐴⟶(SubGrp‘𝐺))
54ffnd 6185 . 2 (𝜑𝑇 Fn 𝐴)
6 ablfac1.b . . . . 5 𝐵 = (Base‘𝐺)
7 ablfac1.o . . . . 5 𝑂 = (od‘𝐺)
8 ablfac1.s . . . . 5 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
9 ablfac1.g . . . . 5 (𝜑𝐺 ∈ Abel)
10 ablfac1.f . . . . 5 (𝜑𝐵 ∈ Fin)
11 ablfac1.1 . . . . 5 (𝜑𝐴 ⊆ ℙ)
126, 7, 8, 9, 10, 11ablfac1b 18677 . . . 4 (𝜑𝐺dom DProd 𝑆)
136fvexi 6345 . . . . . . 7 𝐵 ∈ V
1413rabex 4947 . . . . . 6 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
1514, 8dmmpti 6162 . . . . 5 dom 𝑆 = 𝐴
1615a1i 11 . . . 4 (𝜑 → dom 𝑆 = 𝐴)
1712, 16dprdf2 18614 . . 3 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
1817ffnd 6185 . 2 (𝜑𝑆 Fn 𝐴)
1910adantr 466 . . . 4 ((𝜑𝑞𝐴) → 𝐵 ∈ Fin)
2017ffvelrnda 6504 . . . . 5 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
216subgss 17803 . . . . 5 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → (𝑆𝑞) ⊆ 𝐵)
2220, 21syl 17 . . . 4 ((𝜑𝑞𝐴) → (𝑆𝑞) ⊆ 𝐵)
2319, 22ssfid 8343 . . 3 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ Fin)
244ffvelrnda 6504 . . . . . 6 ((𝜑𝑞𝐴) → (𝑇𝑞) ∈ (SubGrp‘𝐺))
256subgss 17803 . . . . . 6 ((𝑇𝑞) ∈ (SubGrp‘𝐺) → (𝑇𝑞) ⊆ 𝐵)
2624, 25syl 17 . . . . 5 ((𝜑𝑞𝐴) → (𝑇𝑞) ⊆ 𝐵)
2724adantr 466 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑇𝑞) ∈ (SubGrp‘𝐺))
2819, 26ssfid 8343 . . . . . . . 8 ((𝜑𝑞𝐴) → (𝑇𝑞) ∈ Fin)
2928adantr 466 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑇𝑞) ∈ Fin)
30 simpr 471 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → 𝑥 ∈ (𝑇𝑞))
317odsubdvds 18193 . . . . . . 7 (((𝑇𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑇𝑞) ∈ Fin ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∥ (♯‘(𝑇𝑞)))
3227, 29, 30, 31syl3anc 1476 . . . . . 6 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∥ (♯‘(𝑇𝑞)))
33 ablfac1eu.4 . . . . . . . 8 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
3411sselda 3752 . . . . . . . . . 10 ((𝜑𝑞𝐴) → 𝑞 ∈ ℙ)
35 prmz 15596 . . . . . . . . . 10 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
3634, 35syl 17 . . . . . . . . 9 ((𝜑𝑞𝐴) → 𝑞 ∈ ℤ)
37 ablfac1eu.3 . . . . . . . . 9 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
3837nn0zd 11687 . . . . . . . . . 10 ((𝜑𝑞𝐴) → 𝐶 ∈ ℤ)
39 ablgrp 18405 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
409, 39syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Grp)
416grpbn0 17659 . . . . . . . . . . . . . . 15 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
4240, 41syl 17 . . . . . . . . . . . . . 14 (𝜑𝐵 ≠ ∅)
43 hashnncl 13359 . . . . . . . . . . . . . . 15 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
4410, 43syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
4542, 44mpbird 247 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐵) ∈ ℕ)
4645adantr 466 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘𝐵) ∈ ℕ)
4734, 46pccld 15762 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0)
4847nn0zd 11687 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ ℤ)
496lagsubg 17864 . . . . . . . . . . . . 13 (((𝑇𝑞) ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘(𝑇𝑞)) ∥ (♯‘𝐵))
5024, 19, 49syl2anc 573 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) ∥ (♯‘𝐵))
5133, 50eqbrtrrd 4811 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞𝐶) ∥ (♯‘𝐵))
5246nnzd 11688 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘𝐵) ∈ ℤ)
53 pcdvdsb 15780 . . . . . . . . . . . 12 ((𝑞 ∈ ℙ ∧ (♯‘𝐵) ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 ≤ (𝑞 pCnt (♯‘𝐵)) ↔ (𝑞𝐶) ∥ (♯‘𝐵)))
5434, 52, 37, 53syl3anc 1476 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝐶 ≤ (𝑞 pCnt (♯‘𝐵)) ↔ (𝑞𝐶) ∥ (♯‘𝐵)))
5551, 54mpbird 247 . . . . . . . . . 10 ((𝜑𝑞𝐴) → 𝐶 ≤ (𝑞 pCnt (♯‘𝐵)))
56 eluz2 11899 . . . . . . . . . 10 ((𝑞 pCnt (♯‘𝐵)) ∈ (ℤ𝐶) ↔ (𝐶 ∈ ℤ ∧ (𝑞 pCnt (♯‘𝐵)) ∈ ℤ ∧ 𝐶 ≤ (𝑞 pCnt (♯‘𝐵))))
5738, 48, 55, 56syl3anbrc 1428 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ (ℤ𝐶))
58 dvdsexp 15258 . . . . . . . . 9 ((𝑞 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ∧ (𝑞 pCnt (♯‘𝐵)) ∈ (ℤ𝐶)) → (𝑞𝐶) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
5936, 37, 57, 58syl3anc 1476 . . . . . . . 8 ((𝜑𝑞𝐴) → (𝑞𝐶) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
6033, 59eqbrtrd 4809 . . . . . . 7 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
6160adantr 466 . . . . . 6 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (♯‘(𝑇𝑞)) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
6226sselda 3752 . . . . . . . . 9 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → 𝑥𝐵)
636, 7odcl 18162 . . . . . . . . 9 (𝑥𝐵 → (𝑂𝑥) ∈ ℕ0)
6462, 63syl 17 . . . . . . . 8 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∈ ℕ0)
6564nn0zd 11687 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∈ ℤ)
66 hashcl 13349 . . . . . . . . . 10 ((𝑇𝑞) ∈ Fin → (♯‘(𝑇𝑞)) ∈ ℕ0)
6728, 66syl 17 . . . . . . . . 9 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) ∈ ℕ0)
6867nn0zd 11687 . . . . . . . 8 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) ∈ ℤ)
6968adantr 466 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (♯‘(𝑇𝑞)) ∈ ℤ)
70 prmnn 15595 . . . . . . . . . . 11 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
7134, 70syl 17 . . . . . . . . . 10 ((𝜑𝑞𝐴) → 𝑞 ∈ ℕ)
7271, 47nnexpcld 13237 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℕ)
7372nnzd 11688 . . . . . . . 8 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℤ)
7473adantr 466 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℤ)
75 dvdstr 15227 . . . . . . 7 (((𝑂𝑥) ∈ ℤ ∧ (♯‘(𝑇𝑞)) ∈ ℤ ∧ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℤ) → (((𝑂𝑥) ∥ (♯‘(𝑇𝑞)) ∧ (♯‘(𝑇𝑞)) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))) → (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))))
7665, 69, 74, 75syl3anc 1476 . . . . . 6 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (((𝑂𝑥) ∥ (♯‘(𝑇𝑞)) ∧ (♯‘(𝑇𝑞)) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))) → (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))))
7732, 61, 76mp2and 679 . . . . 5 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
7826, 77ssrabdv 3830 . . . 4 ((𝜑𝑞𝐴) → (𝑇𝑞) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))})
79 id 22 . . . . . . . . 9 (𝑝 = 𝑞𝑝 = 𝑞)
80 oveq1 6803 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝 pCnt (♯‘𝐵)) = (𝑞 pCnt (♯‘𝐵)))
8179, 80oveq12d 6814 . . . . . . . 8 (𝑝 = 𝑞 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
8281breq2d 4799 . . . . . . 7 (𝑝 = 𝑞 → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))))
8382rabbidv 3339 . . . . . 6 (𝑝 = 𝑞 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))})
8483, 8, 14fvmpt3i 6431 . . . . 5 (𝑞𝐴 → (𝑆𝑞) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))})
8584adantl 467 . . . 4 ((𝜑𝑞𝐴) → (𝑆𝑞) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))})
8678, 85sseqtr4d 3791 . . 3 ((𝜑𝑞𝐴) → (𝑇𝑞) ⊆ (𝑆𝑞))
8772nnnn0d 11558 . . . . . 6 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℕ0)
88 pcdvds 15775 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
8934, 46, 88syl2anc 573 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
902adantr 466 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝐺dom DProd 𝑇)
913adantr 466 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → dom 𝑇 = 𝐴)
92 ablfac1.2 . . . . . . . . . . . . . . . 16 (𝜑𝐷𝐴)
9392adantr 466 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝐷𝐴)
9490, 91, 93dprdres 18635 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝐺dom DProd (𝑇𝐷) ∧ (𝐺 DProd (𝑇𝐷)) ⊆ (𝐺 DProd 𝑇)))
9594simpld 482 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → 𝐺dom DProd (𝑇𝐷))
964adantr 466 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝑇:𝐴⟶(SubGrp‘𝐺))
9796, 93fssresd 6212 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑇𝐷):𝐷⟶(SubGrp‘𝐺))
9897fdmd 6193 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → dom (𝑇𝐷) = 𝐷)
99 difssd 3889 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝐷 ∖ {𝑞}) ⊆ 𝐷)
10095, 98, 99dprdres 18635 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})) ∧ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ⊆ (𝐺 DProd (𝑇𝐷))))
101100simpld 482 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → 𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))
102 dprdsubg 18631 . . . . . . . . . . 11 (𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ (SubGrp‘𝐺))
103101, 102syl 17 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ (SubGrp‘𝐺))
1046lagsubg 17864 . . . . . . . . . 10 (((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∥ (♯‘𝐵))
105103, 19, 104syl2anc 573 . . . . . . . . 9 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∥ (♯‘𝐵))
106 eqid 2771 . . . . . . . . . . . . . . 15 (0g𝐺) = (0g𝐺)
107106subg0cl 17810 . . . . . . . . . . . . . 14 ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))
108103, 107syl 17 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (0g𝐺) ∈ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))
109108ne0d 4070 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ≠ ∅)
1106dprdssv 18623 . . . . . . . . . . . . . 14 (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ⊆ 𝐵
111 ssfi 8340 . . . . . . . . . . . . . 14 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ Fin)
11219, 110, 111sylancl 574 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ Fin)
113 hashnncl 13359 . . . . . . . . . . . . 13 ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ Fin → ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℕ ↔ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ≠ ∅))
114112, 113syl 17 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℕ ↔ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ≠ ∅))
115109, 114mpbird 247 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℕ)
116115nnzd 11688 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ)
117 id 22 . . . . . . . . . . . . . . 15 (𝑥 = 𝑞𝑥 = 𝑞)
118 sneq 4327 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑞 → {𝑥} = {𝑞})
119118difeq2d 3879 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑞 → (𝐷 ∖ {𝑥}) = (𝐷 ∖ {𝑞}))
120119reseq2d 5533 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑞 → ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})) = ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))
121120oveq2d 6812 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑞 → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥}))) = (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))
122121fveq2d 6337 . . . . . . . . . . . . . . 15 (𝑥 = 𝑞 → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))) = (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))))
123117, 122breq12d 4800 . . . . . . . . . . . . . 14 (𝑥 = 𝑞 → (𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))) ↔ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
124123notbid 307 . . . . . . . . . . . . 13 (𝑥 = 𝑞 → (¬ 𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))) ↔ ¬ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
125 eqid 2771 . . . . . . . . . . . . . . . 16 (𝑝𝐷 ↦ {𝑦𝐵 ∣ (𝑂𝑦) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) = (𝑝𝐷 ↦ {𝑦𝐵 ∣ (𝑂𝑦) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
1269adantr 466 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐺 ∈ Abel)
12710adantr 466 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐵 ∈ Fin)
128 ablfac1c.d . . . . . . . . . . . . . . . . . 18 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
129 ssrab2 3836 . . . . . . . . . . . . . . . . . 18 {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} ⊆ ℙ
130128, 129eqsstri 3784 . . . . . . . . . . . . . . . . 17 𝐷 ⊆ ℙ
131130a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐷 ⊆ ℙ)
132 ssid 3773 . . . . . . . . . . . . . . . . 17 𝐷𝐷
133132a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐷𝐷)
1342, 3, 92dprdres 18635 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺dom DProd (𝑇𝐷) ∧ (𝐺 DProd (𝑇𝐷)) ⊆ (𝐺 DProd 𝑇)))
135134simpld 482 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺dom DProd (𝑇𝐷))
136 dprdsubg 18631 . . . . . . . . . . . . . . . . . . . . 21 (𝐺dom DProd (𝑇𝐷) → (𝐺 DProd (𝑇𝐷)) ∈ (SubGrp‘𝐺))
137135, 136syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd (𝑇𝐷)) ∈ (SubGrp‘𝐺))
138 difssd 3889 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐴𝐷) ⊆ 𝐴)
1392, 3, 138dprdres 18635 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐺dom DProd (𝑇 ↾ (𝐴𝐷)) ∧ (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ⊆ (𝐺 DProd 𝑇)))
140139simpld 482 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐺dom DProd (𝑇 ↾ (𝐴𝐷)))
141 dprdsubg 18631 . . . . . . . . . . . . . . . . . . . . 21 (𝐺dom DProd (𝑇 ↾ (𝐴𝐷)) → (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ∈ (SubGrp‘𝐺))
142140, 141syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ∈ (SubGrp‘𝐺))
143 difss 3888 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐷) ⊆ 𝐴
144 fssres 6211 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇:𝐴⟶(SubGrp‘𝐺) ∧ (𝐴𝐷) ⊆ 𝐴) → (𝑇 ↾ (𝐴𝐷)):(𝐴𝐷)⟶(SubGrp‘𝐺))
1454, 143, 144sylancl 574 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑇 ↾ (𝐴𝐷)):(𝐴𝐷)⟶(SubGrp‘𝐺))
146145fdmd 6193 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (𝑇 ↾ (𝐴𝐷)) = (𝐴𝐷))
147 fvres 6350 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 ∈ (𝐴𝐷) → ((𝑇 ↾ (𝐴𝐷))‘𝑞) = (𝑇𝑞))
148147adantl 467 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑞 ∈ (𝐴𝐷)) → ((𝑇 ↾ (𝐴𝐷))‘𝑞) = (𝑇𝑞))
149 eldif 3733 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 ∈ (𝐴𝐷) ↔ (𝑞𝐴 ∧ ¬ 𝑞𝐷))
15028adantrr 696 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝑇𝑞) ∈ Fin)
151106subg0cl 17810 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑇𝑞) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝑇𝑞))
15224, 151syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑞𝐴) → (0g𝐺) ∈ (𝑇𝑞))
153152snssd 4476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑞𝐴) → {(0g𝐺)} ⊆ (𝑇𝑞))
154153adantrr 696 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → {(0g𝐺)} ⊆ (𝑇𝑞))
15533adantrr 696 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
15634adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → 𝑞 ∈ ℙ)
157 iddvdsexp 15214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑞 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝑞 ∥ (𝑞𝐶))
15836, 157sylan 569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → 𝑞 ∥ (𝑞𝐶))
15951adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → (𝑞𝐶) ∥ (♯‘𝐵))
16033, 68eqeltrrd 2851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑞𝐴) → (𝑞𝐶) ∈ ℤ)
161 dvdstr 15227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑞 ∈ ℤ ∧ (𝑞𝐶) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((𝑞 ∥ (𝑞𝐶) ∧ (𝑞𝐶) ∥ (♯‘𝐵)) → 𝑞 ∥ (♯‘𝐵)))
16236, 160, 52, 161syl3anc 1476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑞𝐴) → ((𝑞 ∥ (𝑞𝐶) ∧ (𝑞𝐶) ∥ (♯‘𝐵)) → 𝑞 ∥ (♯‘𝐵)))
163162adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → ((𝑞 ∥ (𝑞𝐶) ∧ (𝑞𝐶) ∥ (♯‘𝐵)) → 𝑞 ∥ (♯‘𝐵)))
164158, 159, 163mp2and 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → 𝑞 ∥ (♯‘𝐵))
165 breq1 4790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑤 = 𝑞 → (𝑤 ∥ (♯‘𝐵) ↔ 𝑞 ∥ (♯‘𝐵)))
166165, 128elrab2 3518 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑞𝐷 ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵)))
167156, 164, 166sylanbrc 572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → 𝑞𝐷)
168167ex 397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑞𝐴) → (𝐶 ∈ ℕ → 𝑞𝐷))
169168con3d 149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑞𝐴) → (¬ 𝑞𝐷 → ¬ 𝐶 ∈ ℕ))
170169impr 442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ¬ 𝐶 ∈ ℕ)
17137adantrr 696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → 𝐶 ∈ ℕ0)
172 elnn0 11501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐶 ∈ ℕ0 ↔ (𝐶 ∈ ℕ ∨ 𝐶 = 0))
173171, 172sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐶 ∈ ℕ ∨ 𝐶 = 0))
174173ord 853 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (¬ 𝐶 ∈ ℕ → 𝐶 = 0))
175170, 174mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → 𝐶 = 0)
176175oveq2d 6812 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝑞𝐶) = (𝑞↑0))
17771adantrr 696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → 𝑞 ∈ ℕ)
178177nncnd 11242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → 𝑞 ∈ ℂ)
179178exp0d 13209 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝑞↑0) = 1)
180155, 176, 1793eqtrd 2809 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (♯‘(𝑇𝑞)) = 1)
181 fvex 6344 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0g𝐺) ∈ V
182 hashsng 13361 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
183181, 182ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (♯‘{(0g𝐺)}) = 1
184180, 183syl6reqr 2824 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (♯‘{(0g𝐺)}) = (♯‘(𝑇𝑞)))
185 snfi 8198 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {(0g𝐺)} ∈ Fin
186 hashen 13339 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (({(0g𝐺)} ∈ Fin ∧ (𝑇𝑞) ∈ Fin) → ((♯‘{(0g𝐺)}) = (♯‘(𝑇𝑞)) ↔ {(0g𝐺)} ≈ (𝑇𝑞)))
187185, 150, 186sylancr 575 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ((♯‘{(0g𝐺)}) = (♯‘(𝑇𝑞)) ↔ {(0g𝐺)} ≈ (𝑇𝑞)))
188184, 187mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → {(0g𝐺)} ≈ (𝑇𝑞))
189 fisseneq 8331 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑇𝑞) ∈ Fin ∧ {(0g𝐺)} ⊆ (𝑇𝑞) ∧ {(0g𝐺)} ≈ (𝑇𝑞)) → {(0g𝐺)} = (𝑇𝑞))
190150, 154, 188, 189syl3anc 1476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → {(0g𝐺)} = (𝑇𝑞))
191106subg0cl 17810 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺 DProd (𝑇𝐷)) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐺 DProd (𝑇𝐷)))
192137, 191syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (0g𝐺) ∈ (𝐺 DProd (𝑇𝐷)))
193192adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (0g𝐺) ∈ (𝐺 DProd (𝑇𝐷)))
194193snssd 4476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → {(0g𝐺)} ⊆ (𝐺 DProd (𝑇𝐷)))
195190, 194eqsstr3d 3789 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝑇𝑞) ⊆ (𝐺 DProd (𝑇𝐷)))
196149, 195sylan2b 581 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑞 ∈ (𝐴𝐷)) → (𝑇𝑞) ⊆ (𝐺 DProd (𝑇𝐷)))
197148, 196eqsstrd 3788 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞 ∈ (𝐴𝐷)) → ((𝑇 ↾ (𝐴𝐷))‘𝑞) ⊆ (𝐺 DProd (𝑇𝐷)))
198140, 146, 137, 197dprdlub 18633 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ⊆ (𝐺 DProd (𝑇𝐷)))
199 eqid 2771 . . . . . . . . . . . . . . . . . . . . 21 (LSSum‘𝐺) = (LSSum‘𝐺)
200199lsmss2 18288 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 DProd (𝑇𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ⊆ (𝐺 DProd (𝑇𝐷))) → ((𝐺 DProd (𝑇𝐷))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ (𝐴𝐷)))) = (𝐺 DProd (𝑇𝐷)))
201137, 142, 198, 200syl3anc 1476 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐺 DProd (𝑇𝐷))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ (𝐴𝐷)))) = (𝐺 DProd (𝑇𝐷)))
202 disjdif 4183 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∩ (𝐴𝐷)) = ∅
203202a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐷 ∩ (𝐴𝐷)) = ∅)
204 undif2 4187 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∪ (𝐴𝐷)) = (𝐷𝐴)
205 ssequn1 3934 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐷𝐴 ↔ (𝐷𝐴) = 𝐴)
20692, 205sylib 208 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐷𝐴) = 𝐴)
207204, 206syl5req 2818 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 = (𝐷 ∪ (𝐴𝐷)))
2084, 203, 207, 199, 2dprdsplit 18655 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd 𝑇) = ((𝐺 DProd (𝑇𝐷))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ (𝐴𝐷)))))
2091simprd 483 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd 𝑇) = 𝐵)
210208, 209eqtr3d 2807 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐺 DProd (𝑇𝐷))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ (𝐴𝐷)))) = 𝐵)
211201, 210eqtr3d 2807 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺 DProd (𝑇𝐷)) = 𝐵)
212135, 211jca 501 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺dom DProd (𝑇𝐷) ∧ (𝐺 DProd (𝑇𝐷)) = 𝐵))
213212adantr 466 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → (𝐺dom DProd (𝑇𝐷) ∧ (𝐺 DProd (𝑇𝐷)) = 𝐵))
2144, 92fssresd 6212 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑇𝐷):𝐷⟶(SubGrp‘𝐺))
215214fdmd 6193 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (𝑇𝐷) = 𝐷)
216215adantr 466 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → dom (𝑇𝐷) = 𝐷)
21792sselda 3752 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐷) → 𝑞𝐴)
218217, 37syldan 579 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞𝐷) → 𝐶 ∈ ℕ0)
219218adantlr 694 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℙ) ∧ 𝑞𝐷) → 𝐶 ∈ ℕ0)
220 fvres 6350 . . . . . . . . . . . . . . . . . . . 20 (𝑞𝐷 → ((𝑇𝐷)‘𝑞) = (𝑇𝑞))
221220adantl 467 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐷) → ((𝑇𝐷)‘𝑞) = (𝑇𝑞))
222221fveq2d 6337 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐷) → (♯‘((𝑇𝐷)‘𝑞)) = (♯‘(𝑇𝑞)))
223217, 33syldan 579 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐷) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
224222, 223eqtrd 2805 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞𝐷) → (♯‘((𝑇𝐷)‘𝑞)) = (𝑞𝐶))
225224adantlr 694 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℙ) ∧ 𝑞𝐷) → (♯‘((𝑇𝐷)‘𝑞)) = (𝑞𝐶))
226 simpr 471 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝑥 ∈ ℙ)
227 fzfid 12980 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...(♯‘𝐵)) ∈ Fin)
228 prmnn 15595 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ)
2292283ad2ant2 1128 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ∈ ℕ)
230 prmz 15596 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℙ → 𝑤 ∈ ℤ)
231 dvdsle 15241 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (𝑤 ∥ (♯‘𝐵) → 𝑤 ≤ (♯‘𝐵)))
232230, 45, 231syl2anr 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℙ) → (𝑤 ∥ (♯‘𝐵) → 𝑤 ≤ (♯‘𝐵)))
2332323impia 1109 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ≤ (♯‘𝐵))
23445nnzd 11688 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (♯‘𝐵) ∈ ℤ)
2352343ad2ant1 1127 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → (♯‘𝐵) ∈ ℤ)
236 fznn 12615 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐵) ∈ ℤ → (𝑤 ∈ (1...(♯‘𝐵)) ↔ (𝑤 ∈ ℕ ∧ 𝑤 ≤ (♯‘𝐵))))
237235, 236syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → (𝑤 ∈ (1...(♯‘𝐵)) ↔ (𝑤 ∈ ℕ ∧ 𝑤 ≤ (♯‘𝐵))))
238229, 233, 237mpbir2and 692 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ∈ (1...(♯‘𝐵)))
239238rabssdv 3831 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} ⊆ (1...(♯‘𝐵)))
240128, 239syl5eqss 3798 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ⊆ (1...(♯‘𝐵)))
241227, 240ssfid 8343 . . . . . . . . . . . . . . . . 17 (𝜑𝐷 ∈ Fin)
242241adantr 466 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐷 ∈ Fin)
2436, 7, 125, 126, 127, 131, 128, 133, 213, 216, 219, 225, 226, 242ablfac1eulem 18679 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℙ) → ¬ 𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))))
244243ralrimiva 3115 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ ℙ ¬ 𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))))
245244adantr 466 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → ∀𝑥 ∈ ℙ ¬ 𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))))
246124, 245, 34rspcdva 3466 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → ¬ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))))
247 coprm 15630 . . . . . . . . . . . . 13 ((𝑞 ∈ ℙ ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ) → (¬ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ↔ (𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1))
24834, 116, 247syl2anc 573 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (¬ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ↔ (𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1))
249246, 248mpbid 222 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1)
250 rpexp1i 15640 . . . . . . . . . . . 12 ((𝑞 ∈ ℤ ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ ∧ (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1 → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1))
25136, 116, 47, 250syl3anc 1476 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → ((𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1 → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1))
252249, 251mpd 15 . . . . . . . . . 10 ((𝜑𝑞𝐴) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1)
253 coprmdvds2 15575 . . . . . . . . . 10 ((((𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℤ ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) ∧ ((𝑞↑(𝑞 pCnt (♯‘𝐵))) gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1) → (((𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∥ (♯‘𝐵)) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ (♯‘𝐵)))
25473, 116, 52, 252, 253syl31anc 1479 . . . . . . . . 9 ((𝜑𝑞𝐴) → (((𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∥ (♯‘𝐵)) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ (♯‘𝐵)))
25589, 105, 254mp2and 679 . . . . . . . 8 ((𝜑𝑞𝐴) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ (♯‘𝐵))
256 eqid 2771 . . . . . . . . . 10 (Cntz‘𝐺) = (Cntz‘𝐺)
257 inss1 3981 . . . . . . . . . . . . . 14 (𝐷 ∩ {𝑞}) ⊆ 𝐷
258257a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝐷 ∩ {𝑞}) ⊆ 𝐷)
25995, 98, 258dprdres 18635 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) ∧ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ⊆ (𝐺 DProd (𝑇𝐷))))
260259simpld 482 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → 𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))
261 dprdsubg 18631 . . . . . . . . . . 11 (𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∈ (SubGrp‘𝐺))
262260, 261syl 17 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∈ (SubGrp‘𝐺))
263 inass 3972 . . . . . . . . . . . . 13 ((𝐷 ∩ {𝑞}) ∩ (𝐷 ∖ {𝑞})) = (𝐷 ∩ ({𝑞} ∩ (𝐷 ∖ {𝑞})))
264 disjdif 4183 . . . . . . . . . . . . . 14 ({𝑞} ∩ (𝐷 ∖ {𝑞})) = ∅
265264ineq2i 3962 . . . . . . . . . . . . 13 (𝐷 ∩ ({𝑞} ∩ (𝐷 ∖ {𝑞}))) = (𝐷 ∩ ∅)
266 in0 4113 . . . . . . . . . . . . 13 (𝐷 ∩ ∅) = ∅
267263, 265, 2663eqtri 2797 . . . . . . . . . . . 12 ((𝐷 ∩ {𝑞}) ∩ (𝐷 ∖ {𝑞})) = ∅
268267a1i 11 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → ((𝐷 ∩ {𝑞}) ∩ (𝐷 ∖ {𝑞})) = ∅)
26995, 98, 258, 99, 268, 106dprddisj2 18646 . . . . . . . . . 10 ((𝜑𝑞𝐴) → ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∩ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) = {(0g𝐺)})
27095, 98, 258, 99, 268, 256dprdcntz2 18645 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))))
2716dprdssv 18623 . . . . . . . . . . 11 (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ⊆ 𝐵
272 ssfi 8340 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∈ Fin)
27319, 271, 272sylancl 574 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∈ Fin)
274199, 106, 256, 262, 103, 269, 270, 273, 112lsmhash 18325 . . . . . . . . 9 ((𝜑𝑞𝐴) → (♯‘((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))(LSSum‘𝐺)(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
275 inundif 4189 . . . . . . . . . . . . . 14 ((𝐷 ∩ {𝑞}) ∪ (𝐷 ∖ {𝑞})) = 𝐷
276275eqcomi 2780 . . . . . . . . . . . . 13 𝐷 = ((𝐷 ∩ {𝑞}) ∪ (𝐷 ∖ {𝑞}))
277276a1i 11 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → 𝐷 = ((𝐷 ∩ {𝑞}) ∪ (𝐷 ∖ {𝑞})))
27897, 268, 277, 199, 95dprdsplit 18655 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝐺 DProd (𝑇𝐷)) = ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))(LSSum‘𝐺)(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))))
279211adantr 466 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝐺 DProd (𝑇𝐷)) = 𝐵)
280278, 279eqtr3d 2807 . . . . . . . . . 10 ((𝜑𝑞𝐴) → ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))(LSSum‘𝐺)(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) = 𝐵)
281280fveq2d 6337 . . . . . . . . 9 ((𝜑𝑞𝐴) → (♯‘((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))(LSSum‘𝐺)(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = (♯‘𝐵))
282 snssi 4475 . . . . . . . . . . . . . . . . 17 (𝑞𝐷 → {𝑞} ⊆ 𝐷)
283282adantl 467 . . . . . . . . . . . . . . . 16 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → {𝑞} ⊆ 𝐷)
284 sseqin2 3968 . . . . . . . . . . . . . . . 16 ({𝑞} ⊆ 𝐷 ↔ (𝐷 ∩ {𝑞}) = {𝑞})
285283, 284sylib 208 . . . . . . . . . . . . . . 15 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → (𝐷 ∩ {𝑞}) = {𝑞})
286285reseq2d 5533 . . . . . . . . . . . . . 14 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) = ((𝑇𝐷) ↾ {𝑞}))
287286oveq2d 6812 . . . . . . . . . . . . 13 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝐺 DProd ((𝑇𝐷) ↾ {𝑞})))
28895adantr 466 . . . . . . . . . . . . . 14 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → 𝐺dom DProd (𝑇𝐷))
289215ad2antrr 705 . . . . . . . . . . . . . 14 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → dom (𝑇𝐷) = 𝐷)
290 simpr 471 . . . . . . . . . . . . . 14 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → 𝑞𝐷)
291288, 289, 290dpjlem 18658 . . . . . . . . . . . . 13 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → (𝐺 DProd ((𝑇𝐷) ↾ {𝑞})) = ((𝑇𝐷)‘𝑞))
292220adantl 467 . . . . . . . . . . . . 13 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → ((𝑇𝐷)‘𝑞) = (𝑇𝑞))
293287, 291, 2923eqtrd 2809 . . . . . . . . . . . 12 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝑇𝑞))
294 simprr 756 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ¬ 𝑞𝐷)
295 disjsn 4384 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∩ {𝑞}) = ∅ ↔ ¬ 𝑞𝐷)
296294, 295sylibr 224 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐷 ∩ {𝑞}) = ∅)
297296reseq2d 5533 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) = ((𝑇𝐷) ↾ ∅))
298 res0 5537 . . . . . . . . . . . . . . . 16 ((𝑇𝐷) ↾ ∅) = ∅
299297, 298syl6eq 2821 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) = ∅)
300299oveq2d 6812 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝐺 DProd ∅))
301106dprd0 18638 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
30240, 301syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
303302simprd 483 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 DProd ∅) = {(0g𝐺)})
304303adantr 466 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐺 DProd ∅) = {(0g𝐺)})
305300, 304, 1903eqtrd 2809 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝑇𝑞))
306305anassrs 453 . . . . . . . . . . . 12 (((𝜑𝑞𝐴) ∧ ¬ 𝑞𝐷) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝑇𝑞))
307293, 306pm2.61dan 814 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝑇𝑞))
308307fveq2d 6337 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))) = (♯‘(𝑇𝑞)))
309308oveq1d 6811 . . . . . . . . 9 ((𝜑𝑞𝐴) → ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
310274, 281, 3093eqtr3d 2813 . . . . . . . 8 ((𝜑𝑞𝐴) → (♯‘𝐵) = ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
311255, 310breqtrd 4813 . . . . . . 7 ((𝜑𝑞𝐴) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
312115nnne0d 11271 . . . . . . . 8 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ≠ 0)
313 dvdsmulcr 15220 . . . . . . . 8 (((𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℤ ∧ (♯‘(𝑇𝑞)) ∈ ℤ ∧ ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ≠ 0)) → (((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝑇𝑞))))
31473, 68, 116, 312, 313syl112anc 1480 . . . . . . 7 ((𝜑𝑞𝐴) → (((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝑇𝑞))))
315311, 314mpbid 222 . . . . . 6 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝑇𝑞)))
316 dvdseq 15245 . . . . . 6 ((((♯‘(𝑇𝑞)) ∈ ℕ0 ∧ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℕ0) ∧ ((♯‘(𝑇𝑞)) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∧ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝑇𝑞)))) → (♯‘(𝑇𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
31767, 87, 60, 315, 316syl22anc 1477 . . . . 5 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
3186, 7, 8, 9, 10, 11ablfac1a 18676 . . . . 5 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
319317, 318eqtr4d 2808 . . . 4 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (♯‘(𝑆𝑞)))
320 hashen 13339 . . . . 5 (((𝑇𝑞) ∈ Fin ∧ (𝑆𝑞) ∈ Fin) → ((♯‘(𝑇𝑞)) = (♯‘(𝑆𝑞)) ↔ (𝑇𝑞) ≈ (𝑆𝑞)))
32128, 23, 320syl2anc 573 . . . 4 ((𝜑𝑞𝐴) → ((♯‘(𝑇𝑞)) = (♯‘(𝑆𝑞)) ↔ (𝑇𝑞) ≈ (𝑆𝑞)))
322319, 321mpbid 222 . . 3 ((𝜑𝑞𝐴) → (𝑇𝑞) ≈ (𝑆𝑞))
323 fisseneq 8331 . . 3 (((𝑆𝑞) ∈ Fin ∧ (𝑇𝑞) ⊆ (𝑆𝑞) ∧ (𝑇𝑞) ≈ (𝑆𝑞)) → (𝑇𝑞) = (𝑆𝑞))
32423, 86, 322, 323syl3anc 1476 . 2 ((𝜑𝑞𝐴) → (𝑇𝑞) = (𝑆𝑞))
3255, 18, 324eqfnfvd 6459 1 (𝜑𝑇 = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  {crab 3065  Vcvv 3351  cdif 3720  cun 3721  cin 3722  wss 3723  c0 4063  {csn 4317   class class class wbr 4787  cmpt 4864  dom cdm 5250  cres 5252  wf 6026  cfv 6030  (class class class)co 6796  cen 8110  Fincfn 8113  0cc0 10142  1c1 10143   · cmul 10147  cle 10281  cn 11226  0cn0 11499  cz 11584  cuz 11893  ...cfz 12533  cexp 13067  chash 13321  cdvds 15189   gcd cgcd 15424  cprime 15592   pCnt cpc 15748  Basecbs 16064  0gc0g 16308  Grpcgrp 17630  SubGrpcsubg 17796  Cntzccntz 17955  odcod 18151  LSSumclsm 18256  Abelcabl 18401   DProd cdprd 18600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-disj 4756  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-tpos 7508  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-omul 7722  df-er 7900  df-ec 7902  df-qs 7906  df-map 8015  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-acn 8972  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-xnn0 11571  df-z 11585  df-uz 11894  df-q 11997  df-rp 12036  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-dvds 15190  df-gcd 15425  df-prm 15593  df-pc 15749  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-0g 16310  df-gsum 16311  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-subg 17799  df-eqg 17801  df-ghm 17866  df-gim 17909  df-ga 17930  df-cntz 17957  df-oppg 17983  df-od 18155  df-lsm 18258  df-pj1 18259  df-cmn 18402  df-abl 18403  df-dprd 18602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator