MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1eu Structured version   Visualization version   GIF version

Theorem ablfac1eu 19980
Description: The factorization of ablfac1b 19977 is unique, in that any other factorization into prime power factors (even if the exponents are different) must be equal to 𝑆. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1c.d 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac1.2 (𝜑𝐷𝐴)
ablfac1eu.1 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
ablfac1eu.2 (𝜑 → dom 𝑇 = 𝐴)
ablfac1eu.3 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
ablfac1eu.4 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
Assertion
Ref Expression
ablfac1eu (𝜑𝑇 = 𝑆)
Distinct variable groups:   𝑞,𝑝,𝑤,𝑥,𝐵   𝐷,𝑝,𝑞,𝑥   𝜑,𝑝,𝑞,𝑤,𝑥   𝑆,𝑞   𝐴,𝑝,𝑞,𝑥   𝑂,𝑝,𝑞,𝑥   𝑇,𝑞,𝑥   𝐺,𝑝,𝑞,𝑥
Allowed substitution hints:   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑞,𝑝)   𝐷(𝑤)   𝑆(𝑥,𝑤,𝑝)   𝑇(𝑤,𝑝)   𝐺(𝑤)   𝑂(𝑤)

Proof of Theorem ablfac1eu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ablfac1eu.1 . . . . 5 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
21simpld 494 . . . 4 (𝜑𝐺dom DProd 𝑇)
3 ablfac1eu.2 . . . 4 (𝜑 → dom 𝑇 = 𝐴)
42, 3dprdf2 19914 . . 3 (𝜑𝑇:𝐴⟶(SubGrp‘𝐺))
54ffnd 6648 . 2 (𝜑𝑇 Fn 𝐴)
6 ablfac1.b . . . . 5 𝐵 = (Base‘𝐺)
7 ablfac1.o . . . . 5 𝑂 = (od‘𝐺)
8 ablfac1.s . . . . 5 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
9 ablfac1.g . . . . 5 (𝜑𝐺 ∈ Abel)
10 ablfac1.f . . . . 5 (𝜑𝐵 ∈ Fin)
11 ablfac1.1 . . . . 5 (𝜑𝐴 ⊆ ℙ)
126, 7, 8, 9, 10, 11ablfac1b 19977 . . . 4 (𝜑𝐺dom DProd 𝑆)
136fvexi 6831 . . . . . . 7 𝐵 ∈ V
1413rabex 5275 . . . . . 6 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
1514, 8dmmpti 6621 . . . . 5 dom 𝑆 = 𝐴
1615a1i 11 . . . 4 (𝜑 → dom 𝑆 = 𝐴)
1712, 16dprdf2 19914 . . 3 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
1817ffnd 6648 . 2 (𝜑𝑆 Fn 𝐴)
1910adantr 480 . . . 4 ((𝜑𝑞𝐴) → 𝐵 ∈ Fin)
2017ffvelcdmda 7012 . . . . 5 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
216subgss 19032 . . . . 5 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → (𝑆𝑞) ⊆ 𝐵)
2220, 21syl 17 . . . 4 ((𝜑𝑞𝐴) → (𝑆𝑞) ⊆ 𝐵)
2319, 22ssfid 9148 . . 3 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ Fin)
244ffvelcdmda 7012 . . . . . 6 ((𝜑𝑞𝐴) → (𝑇𝑞) ∈ (SubGrp‘𝐺))
256subgss 19032 . . . . . 6 ((𝑇𝑞) ∈ (SubGrp‘𝐺) → (𝑇𝑞) ⊆ 𝐵)
2624, 25syl 17 . . . . 5 ((𝜑𝑞𝐴) → (𝑇𝑞) ⊆ 𝐵)
2726sselda 3932 . . . . . . . 8 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → 𝑥𝐵)
286, 7odcl 19441 . . . . . . . 8 (𝑥𝐵 → (𝑂𝑥) ∈ ℕ0)
2927, 28syl 17 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∈ ℕ0)
3029nn0zd 12486 . . . . . 6 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∈ ℤ)
3119, 26ssfid 9148 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑇𝑞) ∈ Fin)
32 hashcl 14255 . . . . . . . . 9 ((𝑇𝑞) ∈ Fin → (♯‘(𝑇𝑞)) ∈ ℕ0)
3331, 32syl 17 . . . . . . . 8 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) ∈ ℕ0)
3433nn0zd 12486 . . . . . . 7 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) ∈ ℤ)
3534adantr 480 . . . . . 6 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (♯‘(𝑇𝑞)) ∈ ℤ)
3611sselda 3932 . . . . . . . . . 10 ((𝜑𝑞𝐴) → 𝑞 ∈ ℙ)
37 prmnn 16577 . . . . . . . . . 10 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
3836, 37syl 17 . . . . . . . . 9 ((𝜑𝑞𝐴) → 𝑞 ∈ ℕ)
39 ablgrp 19690 . . . . . . . . . . . . . 14 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
409, 39syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Grp)
416grpbn0 18871 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
4240, 41syl 17 . . . . . . . . . . . 12 (𝜑𝐵 ≠ ∅)
43 hashnncl 14265 . . . . . . . . . . . . 13 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
4410, 43syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
4542, 44mpbird 257 . . . . . . . . . . 11 (𝜑 → (♯‘𝐵) ∈ ℕ)
4645adantr 480 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (♯‘𝐵) ∈ ℕ)
4736, 46pccld 16754 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0)
4838, 47nnexpcld 14144 . . . . . . . 8 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℕ)
4948nnzd 12487 . . . . . . 7 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℤ)
5049adantr 480 . . . . . 6 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℤ)
5124adantr 480 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑇𝑞) ∈ (SubGrp‘𝐺))
5231adantr 480 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑇𝑞) ∈ Fin)
53 simpr 484 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → 𝑥 ∈ (𝑇𝑞))
547odsubdvds 19476 . . . . . . 7 (((𝑇𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑇𝑞) ∈ Fin ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∥ (♯‘(𝑇𝑞)))
5551, 52, 53, 54syl3anc 1373 . . . . . 6 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∥ (♯‘(𝑇𝑞)))
56 ablfac1eu.4 . . . . . . . 8 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
57 prmz 16578 . . . . . . . . . 10 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
5836, 57syl 17 . . . . . . . . 9 ((𝜑𝑞𝐴) → 𝑞 ∈ ℤ)
59 ablfac1eu.3 . . . . . . . . 9 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
6059nn0zd 12486 . . . . . . . . . 10 ((𝜑𝑞𝐴) → 𝐶 ∈ ℤ)
6147nn0zd 12486 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ ℤ)
626lagsubg 19100 . . . . . . . . . . . . 13 (((𝑇𝑞) ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘(𝑇𝑞)) ∥ (♯‘𝐵))
6324, 19, 62syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) ∥ (♯‘𝐵))
6456, 63eqbrtrrd 5113 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞𝐶) ∥ (♯‘𝐵))
6546nnzd 12487 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘𝐵) ∈ ℤ)
66 pcdvdsb 16773 . . . . . . . . . . . 12 ((𝑞 ∈ ℙ ∧ (♯‘𝐵) ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 ≤ (𝑞 pCnt (♯‘𝐵)) ↔ (𝑞𝐶) ∥ (♯‘𝐵)))
6736, 65, 59, 66syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝐶 ≤ (𝑞 pCnt (♯‘𝐵)) ↔ (𝑞𝐶) ∥ (♯‘𝐵)))
6864, 67mpbird 257 . . . . . . . . . 10 ((𝜑𝑞𝐴) → 𝐶 ≤ (𝑞 pCnt (♯‘𝐵)))
69 eluz2 12730 . . . . . . . . . 10 ((𝑞 pCnt (♯‘𝐵)) ∈ (ℤ𝐶) ↔ (𝐶 ∈ ℤ ∧ (𝑞 pCnt (♯‘𝐵)) ∈ ℤ ∧ 𝐶 ≤ (𝑞 pCnt (♯‘𝐵))))
7060, 61, 68, 69syl3anbrc 1344 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ (ℤ𝐶))
71 dvdsexp 16231 . . . . . . . . 9 ((𝑞 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ∧ (𝑞 pCnt (♯‘𝐵)) ∈ (ℤ𝐶)) → (𝑞𝐶) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
7258, 59, 70, 71syl3anc 1373 . . . . . . . 8 ((𝜑𝑞𝐴) → (𝑞𝐶) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
7356, 72eqbrtrd 5111 . . . . . . 7 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
7473adantr 480 . . . . . 6 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (♯‘(𝑇𝑞)) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
7530, 35, 50, 55, 74dvdstrd 16198 . . . . 5 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
7626, 75ssrabdv 4022 . . . 4 ((𝜑𝑞𝐴) → (𝑇𝑞) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))})
77 id 22 . . . . . . . . 9 (𝑝 = 𝑞𝑝 = 𝑞)
78 oveq1 7348 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝 pCnt (♯‘𝐵)) = (𝑞 pCnt (♯‘𝐵)))
7977, 78oveq12d 7359 . . . . . . . 8 (𝑝 = 𝑞 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
8079breq2d 5101 . . . . . . 7 (𝑝 = 𝑞 → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))))
8180rabbidv 3400 . . . . . 6 (𝑝 = 𝑞 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))})
8281, 8, 14fvmpt3i 6929 . . . . 5 (𝑞𝐴 → (𝑆𝑞) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))})
8382adantl 481 . . . 4 ((𝜑𝑞𝐴) → (𝑆𝑞) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))})
8476, 83sseqtrrd 3970 . . 3 ((𝜑𝑞𝐴) → (𝑇𝑞) ⊆ (𝑆𝑞))
8548nnnn0d 12434 . . . . . 6 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℕ0)
86 pcdvds 16768 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
8736, 46, 86syl2anc 584 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
882adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝐺dom DProd 𝑇)
893adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → dom 𝑇 = 𝐴)
90 ablfac1.2 . . . . . . . . . . . . . . . 16 (𝜑𝐷𝐴)
9190adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝐷𝐴)
9288, 89, 91dprdres 19935 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝐺dom DProd (𝑇𝐷) ∧ (𝐺 DProd (𝑇𝐷)) ⊆ (𝐺 DProd 𝑇)))
9392simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → 𝐺dom DProd (𝑇𝐷))
944adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝑇:𝐴⟶(SubGrp‘𝐺))
9594, 91fssresd 6686 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑇𝐷):𝐷⟶(SubGrp‘𝐺))
9695fdmd 6657 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → dom (𝑇𝐷) = 𝐷)
97 difssd 4085 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝐷 ∖ {𝑞}) ⊆ 𝐷)
9893, 96, 97dprdres 19935 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})) ∧ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ⊆ (𝐺 DProd (𝑇𝐷))))
9998simpld 494 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → 𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))
100 dprdsubg 19931 . . . . . . . . . . 11 (𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ (SubGrp‘𝐺))
10199, 100syl 17 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ (SubGrp‘𝐺))
1026lagsubg 19100 . . . . . . . . . 10 (((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∥ (♯‘𝐵))
103101, 19, 102syl2anc 584 . . . . . . . . 9 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∥ (♯‘𝐵))
104 eqid 2730 . . . . . . . . . . . . . . 15 (0g𝐺) = (0g𝐺)
105104subg0cl 19039 . . . . . . . . . . . . . 14 ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))
106101, 105syl 17 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (0g𝐺) ∈ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))
107106ne0d 4290 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ≠ ∅)
1086dprdssv 19923 . . . . . . . . . . . . . 14 (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ⊆ 𝐵
109 ssfi 9077 . . . . . . . . . . . . . 14 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ Fin)
11019, 108, 109sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ Fin)
111 hashnncl 14265 . . . . . . . . . . . . 13 ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ Fin → ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℕ ↔ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ≠ ∅))
112110, 111syl 17 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℕ ↔ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ≠ ∅))
113107, 112mpbird 257 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℕ)
114113nnzd 12487 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ)
115 id 22 . . . . . . . . . . . . . . 15 (𝑥 = 𝑞𝑥 = 𝑞)
116 sneq 4584 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑞 → {𝑥} = {𝑞})
117116difeq2d 4074 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑞 → (𝐷 ∖ {𝑥}) = (𝐷 ∖ {𝑞}))
118117reseq2d 5925 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑞 → ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})) = ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))
119118oveq2d 7357 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑞 → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥}))) = (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))
120119fveq2d 6821 . . . . . . . . . . . . . . 15 (𝑥 = 𝑞 → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))) = (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))))
121115, 120breq12d 5102 . . . . . . . . . . . . . 14 (𝑥 = 𝑞 → (𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))) ↔ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
122121notbid 318 . . . . . . . . . . . . 13 (𝑥 = 𝑞 → (¬ 𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))) ↔ ¬ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
123 eqid 2730 . . . . . . . . . . . . . . . 16 (𝑝𝐷 ↦ {𝑦𝐵 ∣ (𝑂𝑦) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) = (𝑝𝐷 ↦ {𝑦𝐵 ∣ (𝑂𝑦) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
1249adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐺 ∈ Abel)
12510adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐵 ∈ Fin)
126 ablfac1c.d . . . . . . . . . . . . . . . . . 18 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
127126ssrab3 4030 . . . . . . . . . . . . . . . . 17 𝐷 ⊆ ℙ
128127a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐷 ⊆ ℙ)
129 ssidd 3956 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐷𝐷)
1302, 3, 90dprdres 19935 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺dom DProd (𝑇𝐷) ∧ (𝐺 DProd (𝑇𝐷)) ⊆ (𝐺 DProd 𝑇)))
131130simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺dom DProd (𝑇𝐷))
132 dprdsubg 19931 . . . . . . . . . . . . . . . . . . . . 21 (𝐺dom DProd (𝑇𝐷) → (𝐺 DProd (𝑇𝐷)) ∈ (SubGrp‘𝐺))
133131, 132syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd (𝑇𝐷)) ∈ (SubGrp‘𝐺))
134 difssd 4085 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐴𝐷) ⊆ 𝐴)
1352, 3, 134dprdres 19935 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐺dom DProd (𝑇 ↾ (𝐴𝐷)) ∧ (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ⊆ (𝐺 DProd 𝑇)))
136135simpld 494 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐺dom DProd (𝑇 ↾ (𝐴𝐷)))
137 dprdsubg 19931 . . . . . . . . . . . . . . . . . . . . 21 (𝐺dom DProd (𝑇 ↾ (𝐴𝐷)) → (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ∈ (SubGrp‘𝐺))
138136, 137syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ∈ (SubGrp‘𝐺))
139 difss 4084 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐷) ⊆ 𝐴
140 fssres 6685 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇:𝐴⟶(SubGrp‘𝐺) ∧ (𝐴𝐷) ⊆ 𝐴) → (𝑇 ↾ (𝐴𝐷)):(𝐴𝐷)⟶(SubGrp‘𝐺))
1414, 139, 140sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑇 ↾ (𝐴𝐷)):(𝐴𝐷)⟶(SubGrp‘𝐺))
142141fdmd 6657 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (𝑇 ↾ (𝐴𝐷)) = (𝐴𝐷))
143 fvres 6836 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 ∈ (𝐴𝐷) → ((𝑇 ↾ (𝐴𝐷))‘𝑞) = (𝑇𝑞))
144143adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑞 ∈ (𝐴𝐷)) → ((𝑇 ↾ (𝐴𝐷))‘𝑞) = (𝑇𝑞))
145 eldif 3910 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 ∈ (𝐴𝐷) ↔ (𝑞𝐴 ∧ ¬ 𝑞𝐷))
14631adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝑇𝑞) ∈ Fin)
147104subg0cl 19039 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑇𝑞) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝑇𝑞))
14824, 147syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑞𝐴) → (0g𝐺) ∈ (𝑇𝑞))
149148snssd 4759 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑞𝐴) → {(0g𝐺)} ⊆ (𝑇𝑞))
150149adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → {(0g𝐺)} ⊆ (𝑇𝑞))
151 fvex 6830 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0g𝐺) ∈ V
152 hashsng 14268 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
153151, 152ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (♯‘{(0g𝐺)}) = 1
15456adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
15536adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → 𝑞 ∈ ℙ)
156 iddvdsexp 16182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑞 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝑞 ∥ (𝑞𝐶))
15758, 156sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → 𝑞 ∥ (𝑞𝐶))
15864adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → (𝑞𝐶) ∥ (♯‘𝐵))
15956, 34eqeltrrd 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑞𝐴) → (𝑞𝐶) ∈ ℤ)
160 dvdstr 16197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑞 ∈ ℤ ∧ (𝑞𝐶) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((𝑞 ∥ (𝑞𝐶) ∧ (𝑞𝐶) ∥ (♯‘𝐵)) → 𝑞 ∥ (♯‘𝐵)))
16158, 159, 65, 160syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑞𝐴) → ((𝑞 ∥ (𝑞𝐶) ∧ (𝑞𝐶) ∥ (♯‘𝐵)) → 𝑞 ∥ (♯‘𝐵)))
162161adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → ((𝑞 ∥ (𝑞𝐶) ∧ (𝑞𝐶) ∥ (♯‘𝐵)) → 𝑞 ∥ (♯‘𝐵)))
163157, 158, 162mp2and 699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → 𝑞 ∥ (♯‘𝐵))
164 breq1 5092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑤 = 𝑞 → (𝑤 ∥ (♯‘𝐵) ↔ 𝑞 ∥ (♯‘𝐵)))
165164, 126elrab2 3648 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑞𝐷 ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵)))
166155, 163, 165sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → 𝑞𝐷)
167166ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑞𝐴) → (𝐶 ∈ ℕ → 𝑞𝐷))
168167con3d 152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑞𝐴) → (¬ 𝑞𝐷 → ¬ 𝐶 ∈ ℕ))
169168impr 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ¬ 𝐶 ∈ ℕ)
17059adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → 𝐶 ∈ ℕ0)
171 elnn0 12375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐶 ∈ ℕ0 ↔ (𝐶 ∈ ℕ ∨ 𝐶 = 0))
172170, 171sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐶 ∈ ℕ ∨ 𝐶 = 0))
173172ord 864 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (¬ 𝐶 ∈ ℕ → 𝐶 = 0))
174169, 173mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → 𝐶 = 0)
175174oveq2d 7357 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝑞𝐶) = (𝑞↑0))
17638adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → 𝑞 ∈ ℕ)
177176nncnd 12133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → 𝑞 ∈ ℂ)
178177exp0d 14039 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝑞↑0) = 1)
179154, 175, 1783eqtrd 2769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (♯‘(𝑇𝑞)) = 1)
180153, 179eqtr4id 2784 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (♯‘{(0g𝐺)}) = (♯‘(𝑇𝑞)))
181 snfi 8960 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {(0g𝐺)} ∈ Fin
182 hashen 14246 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (({(0g𝐺)} ∈ Fin ∧ (𝑇𝑞) ∈ Fin) → ((♯‘{(0g𝐺)}) = (♯‘(𝑇𝑞)) ↔ {(0g𝐺)} ≈ (𝑇𝑞)))
183181, 146, 182sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ((♯‘{(0g𝐺)}) = (♯‘(𝑇𝑞)) ↔ {(0g𝐺)} ≈ (𝑇𝑞)))
184180, 183mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → {(0g𝐺)} ≈ (𝑇𝑞))
185 fisseneq 9142 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑇𝑞) ∈ Fin ∧ {(0g𝐺)} ⊆ (𝑇𝑞) ∧ {(0g𝐺)} ≈ (𝑇𝑞)) → {(0g𝐺)} = (𝑇𝑞))
186146, 150, 184, 185syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → {(0g𝐺)} = (𝑇𝑞))
187104subg0cl 19039 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺 DProd (𝑇𝐷)) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐺 DProd (𝑇𝐷)))
188133, 187syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (0g𝐺) ∈ (𝐺 DProd (𝑇𝐷)))
189188adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (0g𝐺) ∈ (𝐺 DProd (𝑇𝐷)))
190189snssd 4759 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → {(0g𝐺)} ⊆ (𝐺 DProd (𝑇𝐷)))
191186, 190eqsstrrd 3968 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝑇𝑞) ⊆ (𝐺 DProd (𝑇𝐷)))
192145, 191sylan2b 594 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑞 ∈ (𝐴𝐷)) → (𝑇𝑞) ⊆ (𝐺 DProd (𝑇𝐷)))
193144, 192eqsstrd 3967 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞 ∈ (𝐴𝐷)) → ((𝑇 ↾ (𝐴𝐷))‘𝑞) ⊆ (𝐺 DProd (𝑇𝐷)))
194136, 142, 133, 193dprdlub 19933 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ⊆ (𝐺 DProd (𝑇𝐷)))
195 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (LSSum‘𝐺) = (LSSum‘𝐺)
196195lsmss2 19572 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 DProd (𝑇𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ⊆ (𝐺 DProd (𝑇𝐷))) → ((𝐺 DProd (𝑇𝐷))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ (𝐴𝐷)))) = (𝐺 DProd (𝑇𝐷)))
197133, 138, 194, 196syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐺 DProd (𝑇𝐷))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ (𝐴𝐷)))) = (𝐺 DProd (𝑇𝐷)))
198 disjdif 4420 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∩ (𝐴𝐷)) = ∅
199198a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐷 ∩ (𝐴𝐷)) = ∅)
200 undif2 4425 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∪ (𝐴𝐷)) = (𝐷𝐴)
201 ssequn1 4134 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐷𝐴 ↔ (𝐷𝐴) = 𝐴)
20290, 201sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐷𝐴) = 𝐴)
203200, 202eqtr2id 2778 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 = (𝐷 ∪ (𝐴𝐷)))
2044, 199, 203, 195, 2dprdsplit 19955 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd 𝑇) = ((𝐺 DProd (𝑇𝐷))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ (𝐴𝐷)))))
2051simprd 495 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd 𝑇) = 𝐵)
206204, 205eqtr3d 2767 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐺 DProd (𝑇𝐷))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ (𝐴𝐷)))) = 𝐵)
207197, 206eqtr3d 2767 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺 DProd (𝑇𝐷)) = 𝐵)
208131, 207jca 511 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺dom DProd (𝑇𝐷) ∧ (𝐺 DProd (𝑇𝐷)) = 𝐵))
209208adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → (𝐺dom DProd (𝑇𝐷) ∧ (𝐺 DProd (𝑇𝐷)) = 𝐵))
2104, 90fssresd 6686 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑇𝐷):𝐷⟶(SubGrp‘𝐺))
211210fdmd 6657 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (𝑇𝐷) = 𝐷)
212211adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → dom (𝑇𝐷) = 𝐷)
21390sselda 3932 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐷) → 𝑞𝐴)
214213, 59syldan 591 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞𝐷) → 𝐶 ∈ ℕ0)
215214adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℙ) ∧ 𝑞𝐷) → 𝐶 ∈ ℕ0)
216 fvres 6836 . . . . . . . . . . . . . . . . . . . 20 (𝑞𝐷 → ((𝑇𝐷)‘𝑞) = (𝑇𝑞))
217216adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐷) → ((𝑇𝐷)‘𝑞) = (𝑇𝑞))
218217fveq2d 6821 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐷) → (♯‘((𝑇𝐷)‘𝑞)) = (♯‘(𝑇𝑞)))
219213, 56syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐷) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
220218, 219eqtrd 2765 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞𝐷) → (♯‘((𝑇𝐷)‘𝑞)) = (𝑞𝐶))
221220adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℙ) ∧ 𝑞𝐷) → (♯‘((𝑇𝐷)‘𝑞)) = (𝑞𝐶))
222 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝑥 ∈ ℙ)
223 fzfid 13872 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...(♯‘𝐵)) ∈ Fin)
224 prmnn 16577 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ)
2252243ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ∈ ℕ)
226 prmz 16578 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℙ → 𝑤 ∈ ℤ)
227 dvdsle 16213 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (𝑤 ∥ (♯‘𝐵) → 𝑤 ≤ (♯‘𝐵)))
228226, 45, 227syl2anr 597 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℙ) → (𝑤 ∥ (♯‘𝐵) → 𝑤 ≤ (♯‘𝐵)))
2292283impia 1117 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ≤ (♯‘𝐵))
23045nnzd 12487 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (♯‘𝐵) ∈ ℤ)
2312303ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → (♯‘𝐵) ∈ ℤ)
232 fznn 13484 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐵) ∈ ℤ → (𝑤 ∈ (1...(♯‘𝐵)) ↔ (𝑤 ∈ ℕ ∧ 𝑤 ≤ (♯‘𝐵))))
233231, 232syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → (𝑤 ∈ (1...(♯‘𝐵)) ↔ (𝑤 ∈ ℕ ∧ 𝑤 ≤ (♯‘𝐵))))
234225, 229, 233mpbir2and 713 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ∈ (1...(♯‘𝐵)))
235234rabssdv 4023 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} ⊆ (1...(♯‘𝐵)))
236126, 235eqsstrid 3971 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ⊆ (1...(♯‘𝐵)))
237223, 236ssfid 9148 . . . . . . . . . . . . . . . . 17 (𝜑𝐷 ∈ Fin)
238237adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐷 ∈ Fin)
2396, 7, 123, 124, 125, 128, 126, 129, 209, 212, 215, 221, 222, 238ablfac1eulem 19979 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℙ) → ¬ 𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))))
240239ralrimiva 3122 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ ℙ ¬ 𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))))
241240adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → ∀𝑥 ∈ ℙ ¬ 𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))))
242122, 241, 36rspcdva 3576 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → ¬ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))))
243 coprm 16614 . . . . . . . . . . . . 13 ((𝑞 ∈ ℙ ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ) → (¬ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ↔ (𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1))
24436, 114, 243syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (¬ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ↔ (𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1))
245242, 244mpbid 232 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1)
246 rpexp1i 16626 . . . . . . . . . . . 12 ((𝑞 ∈ ℤ ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ ∧ (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1 → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1))
24758, 114, 47, 246syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → ((𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1 → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1))
248245, 247mpd 15 . . . . . . . . . 10 ((𝜑𝑞𝐴) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1)
249 coprmdvds2 16557 . . . . . . . . . 10 ((((𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℤ ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) ∧ ((𝑞↑(𝑞 pCnt (♯‘𝐵))) gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1) → (((𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∥ (♯‘𝐵)) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ (♯‘𝐵)))
25049, 114, 65, 248, 249syl31anc 1375 . . . . . . . . 9 ((𝜑𝑞𝐴) → (((𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∥ (♯‘𝐵)) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ (♯‘𝐵)))
25187, 103, 250mp2and 699 . . . . . . . 8 ((𝜑𝑞𝐴) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ (♯‘𝐵))
252 eqid 2730 . . . . . . . . . 10 (Cntz‘𝐺) = (Cntz‘𝐺)
253 inss1 4185 . . . . . . . . . . . . . 14 (𝐷 ∩ {𝑞}) ⊆ 𝐷
254253a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝐷 ∩ {𝑞}) ⊆ 𝐷)
25593, 96, 254dprdres 19935 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) ∧ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ⊆ (𝐺 DProd (𝑇𝐷))))
256255simpld 494 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → 𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))
257 dprdsubg 19931 . . . . . . . . . . 11 (𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∈ (SubGrp‘𝐺))
258256, 257syl 17 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∈ (SubGrp‘𝐺))
259 inass 4176 . . . . . . . . . . . . 13 ((𝐷 ∩ {𝑞}) ∩ (𝐷 ∖ {𝑞})) = (𝐷 ∩ ({𝑞} ∩ (𝐷 ∖ {𝑞})))
260 disjdif 4420 . . . . . . . . . . . . . 14 ({𝑞} ∩ (𝐷 ∖ {𝑞})) = ∅
261260ineq2i 4165 . . . . . . . . . . . . 13 (𝐷 ∩ ({𝑞} ∩ (𝐷 ∖ {𝑞}))) = (𝐷 ∩ ∅)
262 in0 4343 . . . . . . . . . . . . 13 (𝐷 ∩ ∅) = ∅
263259, 261, 2623eqtri 2757 . . . . . . . . . . . 12 ((𝐷 ∩ {𝑞}) ∩ (𝐷 ∖ {𝑞})) = ∅
264263a1i 11 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → ((𝐷 ∩ {𝑞}) ∩ (𝐷 ∖ {𝑞})) = ∅)
26593, 96, 254, 97, 264, 104dprddisj2 19946 . . . . . . . . . 10 ((𝜑𝑞𝐴) → ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∩ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) = {(0g𝐺)})
26693, 96, 254, 97, 264, 252dprdcntz2 19945 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))))
2676dprdssv 19923 . . . . . . . . . . 11 (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ⊆ 𝐵
268 ssfi 9077 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∈ Fin)
26919, 267, 268sylancl 586 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∈ Fin)
270195, 104, 252, 258, 101, 265, 266, 269, 110lsmhash 19610 . . . . . . . . 9 ((𝜑𝑞𝐴) → (♯‘((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))(LSSum‘𝐺)(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
271 inundif 4427 . . . . . . . . . . . . . 14 ((𝐷 ∩ {𝑞}) ∪ (𝐷 ∖ {𝑞})) = 𝐷
272271eqcomi 2739 . . . . . . . . . . . . 13 𝐷 = ((𝐷 ∩ {𝑞}) ∪ (𝐷 ∖ {𝑞}))
273272a1i 11 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → 𝐷 = ((𝐷 ∩ {𝑞}) ∪ (𝐷 ∖ {𝑞})))
27495, 264, 273, 195, 93dprdsplit 19955 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝐺 DProd (𝑇𝐷)) = ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))(LSSum‘𝐺)(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))))
275207adantr 480 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝐺 DProd (𝑇𝐷)) = 𝐵)
276274, 275eqtr3d 2767 . . . . . . . . . 10 ((𝜑𝑞𝐴) → ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))(LSSum‘𝐺)(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) = 𝐵)
277276fveq2d 6821 . . . . . . . . 9 ((𝜑𝑞𝐴) → (♯‘((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))(LSSum‘𝐺)(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = (♯‘𝐵))
278 snssi 4758 . . . . . . . . . . . . . . . . 17 (𝑞𝐷 → {𝑞} ⊆ 𝐷)
279278adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → {𝑞} ⊆ 𝐷)
280 sseqin2 4171 . . . . . . . . . . . . . . . 16 ({𝑞} ⊆ 𝐷 ↔ (𝐷 ∩ {𝑞}) = {𝑞})
281279, 280sylib 218 . . . . . . . . . . . . . . 15 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → (𝐷 ∩ {𝑞}) = {𝑞})
282281reseq2d 5925 . . . . . . . . . . . . . 14 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) = ((𝑇𝐷) ↾ {𝑞}))
283282oveq2d 7357 . . . . . . . . . . . . 13 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝐺 DProd ((𝑇𝐷) ↾ {𝑞})))
28493adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → 𝐺dom DProd (𝑇𝐷))
285211ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → dom (𝑇𝐷) = 𝐷)
286 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → 𝑞𝐷)
287284, 285, 286dpjlem 19958 . . . . . . . . . . . . 13 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → (𝐺 DProd ((𝑇𝐷) ↾ {𝑞})) = ((𝑇𝐷)‘𝑞))
288216adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → ((𝑇𝐷)‘𝑞) = (𝑇𝑞))
289283, 287, 2883eqtrd 2769 . . . . . . . . . . . 12 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝑇𝑞))
290 simprr 772 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ¬ 𝑞𝐷)
291 disjsn 4662 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∩ {𝑞}) = ∅ ↔ ¬ 𝑞𝐷)
292290, 291sylibr 234 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐷 ∩ {𝑞}) = ∅)
293292reseq2d 5925 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) = ((𝑇𝐷) ↾ ∅))
294 res0 5929 . . . . . . . . . . . . . . . 16 ((𝑇𝐷) ↾ ∅) = ∅
295293, 294eqtrdi 2781 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) = ∅)
296295oveq2d 7357 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝐺 DProd ∅))
297104dprd0 19938 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
29840, 297syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
299298simprd 495 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 DProd ∅) = {(0g𝐺)})
300299adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐺 DProd ∅) = {(0g𝐺)})
301296, 300, 1863eqtrd 2769 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝑇𝑞))
302301anassrs 467 . . . . . . . . . . . 12 (((𝜑𝑞𝐴) ∧ ¬ 𝑞𝐷) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝑇𝑞))
303289, 302pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝑇𝑞))
304303fveq2d 6821 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))) = (♯‘(𝑇𝑞)))
305304oveq1d 7356 . . . . . . . . 9 ((𝜑𝑞𝐴) → ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
306270, 277, 3053eqtr3d 2773 . . . . . . . 8 ((𝜑𝑞𝐴) → (♯‘𝐵) = ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
307251, 306breqtrd 5115 . . . . . . 7 ((𝜑𝑞𝐴) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
308113nnne0d 12167 . . . . . . . 8 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ≠ 0)
309 dvdsmulcr 16188 . . . . . . . 8 (((𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℤ ∧ (♯‘(𝑇𝑞)) ∈ ℤ ∧ ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ≠ 0)) → (((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝑇𝑞))))
31049, 34, 114, 308, 309syl112anc 1376 . . . . . . 7 ((𝜑𝑞𝐴) → (((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝑇𝑞))))
311307, 310mpbid 232 . . . . . 6 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝑇𝑞)))
312 dvdseq 16217 . . . . . 6 ((((♯‘(𝑇𝑞)) ∈ ℕ0 ∧ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℕ0) ∧ ((♯‘(𝑇𝑞)) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∧ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝑇𝑞)))) → (♯‘(𝑇𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
31333, 85, 73, 311, 312syl22anc 838 . . . . 5 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
3146, 7, 8, 9, 10, 11ablfac1a 19976 . . . . 5 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
315313, 314eqtr4d 2768 . . . 4 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (♯‘(𝑆𝑞)))
316 hashen 14246 . . . . 5 (((𝑇𝑞) ∈ Fin ∧ (𝑆𝑞) ∈ Fin) → ((♯‘(𝑇𝑞)) = (♯‘(𝑆𝑞)) ↔ (𝑇𝑞) ≈ (𝑆𝑞)))
31731, 23, 316syl2anc 584 . . . 4 ((𝜑𝑞𝐴) → ((♯‘(𝑇𝑞)) = (♯‘(𝑆𝑞)) ↔ (𝑇𝑞) ≈ (𝑆𝑞)))
318315, 317mpbid 232 . . 3 ((𝜑𝑞𝐴) → (𝑇𝑞) ≈ (𝑆𝑞))
319 fisseneq 9142 . . 3 (((𝑆𝑞) ∈ Fin ∧ (𝑇𝑞) ⊆ (𝑆𝑞) ∧ (𝑇𝑞) ≈ (𝑆𝑞)) → (𝑇𝑞) = (𝑆𝑞))
32023, 84, 318, 319syl3anc 1373 . 2 ((𝜑𝑞𝐴) → (𝑇𝑞) = (𝑆𝑞))
3215, 18, 320eqfnfvd 6962 1 (𝜑𝑇 = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  {crab 3393  Vcvv 3434  cdif 3897  cun 3898  cin 3899  wss 3900  c0 4281  {csn 4574   class class class wbr 5089  cmpt 5170  dom cdm 5614  cres 5616  wf 6473  cfv 6477  (class class class)co 7341  cen 8861  Fincfn 8864  0cc0 10998  1c1 10999   · cmul 11003  cle 11139  cn 12117  0cn0 12373  cz 12460  cuz 12724  ...cfz 13399  cexp 13960  chash 14229  cdvds 16155   gcd cgcd 16397  cprime 16574   pCnt cpc 16740  Basecbs 17112  0gc0g 17335  Grpcgrp 18838  SubGrpcsubg 19025  Cntzccntz 19220  odcod 19429  LSSumclsm 19539  Abelcabl 19686   DProd cdprd 19900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9786  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-q 12839  df-rp 12883  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586  df-dvds 16156  df-gcd 16398  df-prm 16575  df-pc 16741  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-0g 17337  df-gsum 17338  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-eqg 19030  df-ghm 19118  df-gim 19164  df-ga 19195  df-cntz 19222  df-oppg 19251  df-od 19433  df-lsm 19541  df-pj1 19542  df-cmn 19687  df-abl 19688  df-dprd 19902
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator