Step | Hyp | Ref
| Expression |
1 | | arch 12239 |
. . . . 5
⊢ (𝑥 ∈ ℝ →
∃𝑧 ∈ ℕ
𝑥 < 𝑧) |
2 | 1 | ad2antlr 724 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥) → ∃𝑧 ∈ ℕ 𝑥 < 𝑧) |
3 | | df-ima 5603 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∘ 𝐾) “ (1...𝑀)) = ran ((𝐺 ∘ 𝐾) ↾ (1...𝑀)) |
4 | | ovolicc2.8 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐺:𝑈⟶ℕ) |
5 | | nnuz 12630 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℕ =
(ℤ≥‘1) |
6 | | ovolicc2.15 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ ×
{𝐶})) |
7 | | 1zzd 12360 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 1 ∈
ℤ) |
8 | | ovolicc2.14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐶 ∈ 𝑇) |
9 | | ovolicc2.11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐻:𝑇⟶𝑇) |
10 | 5, 6, 7, 8, 9 | algrf 16287 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐾:ℕ⟶𝑇) |
11 | | ovolicc2.10 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} |
12 | 11 | ssrab3 4016 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑇 ⊆ 𝑈 |
13 | | fss 6626 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾:ℕ⟶𝑇 ∧ 𝑇 ⊆ 𝑈) → 𝐾:ℕ⟶𝑈) |
14 | 10, 12, 13 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾:ℕ⟶𝑈) |
15 | | fco 6633 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺:𝑈⟶ℕ ∧ 𝐾:ℕ⟶𝑈) → (𝐺 ∘ 𝐾):ℕ⟶ℕ) |
16 | 4, 14, 15 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐺 ∘ 𝐾):ℕ⟶ℕ) |
17 | | fz1ssnn 13296 |
. . . . . . . . . . . . . . . . . 18
⊢
(1...𝑀) ⊆
ℕ |
18 | | fssres 6649 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∘ 𝐾):ℕ⟶ℕ ∧ (1...𝑀) ⊆ ℕ) →
((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)⟶ℕ) |
19 | 16, 17, 18 | sylancl 586 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)⟶ℕ) |
20 | 19 | frnd 6617 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ran ((𝐺 ∘ 𝐾) ↾ (1...𝑀)) ⊆ ℕ) |
21 | 3, 20 | eqsstrid 3970 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐺 ∘ 𝐾) “ (1...𝑀)) ⊆ ℕ) |
22 | | nnssre 11986 |
. . . . . . . . . . . . . . 15
⊢ ℕ
⊆ ℝ |
23 | 21, 22 | sstrdi 3934 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺 ∘ 𝐾) “ (1...𝑀)) ⊆ ℝ) |
24 | 23 | ad3antrrr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → ((𝐺 ∘ 𝐾) “ (1...𝑀)) ⊆ ℝ) |
25 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) |
26 | 24, 25 | sseldd 3923 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑦 ∈ ℝ) |
27 | | simpllr 773 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑥 ∈ ℝ) |
28 | | nnre 11989 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℝ) |
29 | 28 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑧 ∈ ℝ) |
30 | | lelttr 11074 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 ≤ 𝑥 ∧ 𝑥 < 𝑧) → 𝑦 < 𝑧)) |
31 | 26, 27, 29, 30 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → ((𝑦 ≤ 𝑥 ∧ 𝑥 < 𝑧) → 𝑦 < 𝑧)) |
32 | 31 | ancomsd 466 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → ((𝑥 < 𝑧 ∧ 𝑦 ≤ 𝑥) → 𝑦 < 𝑧)) |
33 | 32 | expdimp 453 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) ∧ 𝑥 < 𝑧) → (𝑦 ≤ 𝑥 → 𝑦 < 𝑧)) |
34 | 33 | an32s 649 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑥 < 𝑧) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → (𝑦 ≤ 𝑥 → 𝑦 < 𝑧)) |
35 | 34 | ralimdva 3109 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑥 < 𝑧) → (∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥 → ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) |
36 | 35 | impancom 452 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥) → (𝑥 < 𝑧 → ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) |
37 | 36 | an32s 649 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥) ∧ 𝑧 ∈ ℕ) → (𝑥 < 𝑧 → ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) |
38 | 37 | reximdva 3204 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥) → (∃𝑧 ∈ ℕ 𝑥 < 𝑧 → ∃𝑧 ∈ ℕ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) |
39 | 2, 38 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥) → ∃𝑧 ∈ ℕ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧) |
40 | | fzfid 13702 |
. . . . 5
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
41 | | fvres 6802 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑀) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = ((𝐺 ∘ 𝐾)‘𝑖)) |
42 | 41 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = ((𝐺 ∘ 𝐾)‘𝑖)) |
43 | | elfznn 13294 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℕ) |
44 | | fvco3 6876 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾:ℕ⟶𝑇 ∧ 𝑖 ∈ ℕ) → ((𝐺 ∘ 𝐾)‘𝑖) = (𝐺‘(𝐾‘𝑖))) |
45 | 10, 43, 44 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺 ∘ 𝐾)‘𝑖) = (𝐺‘(𝐾‘𝑖))) |
46 | 42, 45 | eqtrd 2779 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = (𝐺‘(𝐾‘𝑖))) |
47 | 46 | adantrr 714 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = (𝐺‘(𝐾‘𝑖))) |
48 | | fvres 6802 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...𝑀) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑗) = ((𝐺 ∘ 𝐾)‘𝑗)) |
49 | 48 | ad2antll 726 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑗) = ((𝐺 ∘ 𝐾)‘𝑗)) |
50 | | elfznn 13294 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ) |
51 | 50 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ ℕ) |
52 | | fvco3 6876 |
. . . . . . . . . . . . . 14
⊢ ((𝐾:ℕ⟶𝑇 ∧ 𝑗 ∈ ℕ) → ((𝐺 ∘ 𝐾)‘𝑗) = (𝐺‘(𝐾‘𝑗))) |
53 | 10, 51, 52 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → ((𝐺 ∘ 𝐾)‘𝑗) = (𝐺‘(𝐾‘𝑗))) |
54 | 49, 53 | eqtrd 2779 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑗) = (𝐺‘(𝐾‘𝑗))) |
55 | 47, 54 | eqeq12d 2755 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → ((((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑗) ↔ (𝐺‘(𝐾‘𝑖)) = (𝐺‘(𝐾‘𝑗)))) |
56 | | 2fveq3 6788 |
. . . . . . . . . . . 12
⊢ ((𝐺‘(𝐾‘𝑖)) = (𝐺‘(𝐾‘𝑗)) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑗))))) |
57 | 17 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1...𝑀) ⊆ ℕ) |
58 | | elfznn 13294 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℕ) |
59 | 58 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑚 ∈ 𝑊) → 𝑛 ∈ ℕ) |
60 | 59 | nnred 11997 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑚 ∈ 𝑊) → 𝑛 ∈ ℝ) |
61 | | ovolicc2.16 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾‘𝑛)} |
62 | 61 | ssrab3 4016 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑊 ⊆
ℕ |
63 | 62, 22 | sstri 3931 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑊 ⊆
ℝ |
64 | | ovolicc2.17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑀 = inf(𝑊, ℝ, < ) |
65 | 62, 5 | sseqtri 3958 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑊 ⊆
(ℤ≥‘1) |
66 | | nnnfi 13695 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ¬
ℕ ∈ Fin |
67 | | ovolicc2.6 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) |
68 | 67 | elin2d 4134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑈 ∈ Fin) |
69 | | ssfi 8965 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑈 ∈ Fin ∧ 𝑇 ⊆ 𝑈) → 𝑇 ∈ Fin) |
70 | 68, 12, 69 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑇 ∈ Fin) |
71 | 70 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝑇 ∈ Fin) |
72 | 10 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐾:ℕ⟶𝑇) |
73 | | 2fveq3 6788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐾‘𝑖) = (𝐾‘𝑗) → (𝐹‘(𝐺‘(𝐾‘𝑖))) = (𝐹‘(𝐺‘(𝐾‘𝑗)))) |
74 | 73 | fveq2d 6787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐾‘𝑖) = (𝐾‘𝑗) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑗))))) |
75 | | simpll 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝜑) |
76 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑖 ∈ ℕ) |
77 | | ral0 4444 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
∀𝑚 ∈
∅ 𝑛 ≤ 𝑚 |
78 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑊 = ∅) |
79 | 78 | raleqdv 3349 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 ↔ ∀𝑚 ∈ ∅ 𝑛 ≤ 𝑚)) |
80 | 77, 79 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚) |
81 | 80 | ralrimivw 3105 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ∀𝑛 ∈ ℕ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚) |
82 | | rabid2 3315 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℕ
= {𝑛 ∈ ℕ ∣
∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚} ↔ ∀𝑛 ∈ ℕ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚) |
83 | 81, 82 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ℕ = {𝑛 ∈ ℕ ∣
∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚}) |
84 | 76, 83 | eleqtrd 2842 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑖 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚}) |
85 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑗 ∈ ℕ) |
86 | 85, 83 | eleqtrd 2842 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑗 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚}) |
87 | | ovolicc.1 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝐴 ∈ ℝ) |
88 | | ovolicc.2 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝐵 ∈ ℝ) |
89 | | ovolicc.3 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
90 | | ovolicc2.4 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
91 | | ovolicc2.5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
92 | | ovolicc2.7 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) |
93 | | ovolicc2.9 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) |
94 | | ovolicc2.12 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) |
95 | | ovolicc2.13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝐴 ∈ 𝐶) |
96 | 87, 88, 89, 90, 91, 67, 92, 4, 93, 11, 9, 94, 95, 8, 6, 61 | ovolicc2lem3 24692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑖 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚} ∧ 𝑗 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚})) → (𝑖 = 𝑗 ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑗)))))) |
97 | 75, 84, 86, 96 | syl12anc 834 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 = 𝑗 ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑗)))))) |
98 | 74, 97 | syl5ibr 245 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝐾‘𝑖) = (𝐾‘𝑗) → 𝑖 = 𝑗)) |
99 | 98 | ralrimivva 3124 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑊 = ∅) → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℕ ((𝐾‘𝑖) = (𝐾‘𝑗) → 𝑖 = 𝑗)) |
100 | | dff13 7137 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐾:ℕ–1-1→𝑇 ↔ (𝐾:ℕ⟶𝑇 ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℕ ((𝐾‘𝑖) = (𝐾‘𝑗) → 𝑖 = 𝑗))) |
101 | 72, 99, 100 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐾:ℕ–1-1→𝑇) |
102 | | f1domg 8769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑇 ∈ Fin → (𝐾:ℕ–1-1→𝑇 → ℕ ≼ 𝑇)) |
103 | 71, 101, 102 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑊 = ∅) → ℕ ≼ 𝑇) |
104 | | domfi 8984 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑇 ∈ Fin ∧ ℕ
≼ 𝑇) → ℕ
∈ Fin) |
105 | 70, 103, 104 | syl2an2r 682 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑊 = ∅) → ℕ ∈
Fin) |
106 | 105 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑊 = ∅ → ℕ ∈
Fin)) |
107 | 106 | necon3bd 2958 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (¬ ℕ ∈ Fin
→ 𝑊 ≠
∅)) |
108 | 66, 107 | mpi 20 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑊 ≠ ∅) |
109 | | infssuzcl 12681 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑊 ⊆
(ℤ≥‘1) ∧ 𝑊 ≠ ∅) → inf(𝑊, ℝ, < ) ∈ 𝑊) |
110 | 65, 108, 109 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → inf(𝑊, ℝ, < ) ∈ 𝑊) |
111 | 64, 110 | eqeltrid 2844 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑀 ∈ 𝑊) |
112 | 63, 111 | sselid 3920 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑀 ∈ ℝ) |
113 | 112 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑚 ∈ 𝑊) → 𝑀 ∈ ℝ) |
114 | 63 | sseli 3918 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ 𝑊 → 𝑚 ∈ ℝ) |
115 | 114 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑚 ∈ 𝑊) → 𝑚 ∈ ℝ) |
116 | | elfzle2 13269 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (1...𝑀) → 𝑛 ≤ 𝑀) |
117 | 116 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑚 ∈ 𝑊) → 𝑛 ≤ 𝑀) |
118 | | infssuzle 12680 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑊 ⊆
(ℤ≥‘1) ∧ 𝑚 ∈ 𝑊) → inf(𝑊, ℝ, < ) ≤ 𝑚) |
119 | 65, 118 | mpan 687 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ 𝑊 → inf(𝑊, ℝ, < ) ≤ 𝑚) |
120 | 64, 119 | eqbrtrid 5110 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ 𝑊 → 𝑀 ≤ 𝑚) |
121 | 120 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑚 ∈ 𝑊) → 𝑀 ≤ 𝑚) |
122 | 60, 113, 115, 117, 121 | letrd 11141 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑚 ∈ 𝑊) → 𝑛 ≤ 𝑚) |
123 | 122 | ralrimiva 3104 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚) |
124 | 57, 123 | ssrabdv 4008 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1...𝑀) ⊆ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚}) |
125 | 124 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → (1...𝑀) ⊆ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚}) |
126 | | simprl 768 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → 𝑖 ∈ (1...𝑀)) |
127 | 125, 126 | sseldd 3923 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → 𝑖 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚}) |
128 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → 𝑗 ∈ (1...𝑀)) |
129 | 125, 128 | sseldd 3923 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → 𝑗 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚}) |
130 | 127, 129 | jca 512 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → (𝑖 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚} ∧ 𝑗 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚})) |
131 | 130, 96 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → (𝑖 = 𝑗 ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑗)))))) |
132 | 56, 131 | syl5ibr 245 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → ((𝐺‘(𝐾‘𝑖)) = (𝐺‘(𝐾‘𝑗)) → 𝑖 = 𝑗)) |
133 | 55, 132 | sylbid 239 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → ((((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑗) → 𝑖 = 𝑗)) |
134 | 133 | ralrimivva 3124 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)∀𝑗 ∈ (1...𝑀)((((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑗) → 𝑖 = 𝑗)) |
135 | | dff13 7137 |
. . . . . . . . 9
⊢ (((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1→ℕ ↔ (((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)⟶ℕ ∧ ∀𝑖 ∈ (1...𝑀)∀𝑗 ∈ (1...𝑀)((((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑗) → 𝑖 = 𝑗))) |
136 | 19, 134, 135 | sylanbrc 583 |
. . . . . . . 8
⊢ (𝜑 → ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1→ℕ) |
137 | | f1f1orn 6736 |
. . . . . . . 8
⊢ (((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1→ℕ → ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→ran
((𝐺 ∘ 𝐾) ↾ (1...𝑀))) |
138 | 136, 137 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→ran
((𝐺 ∘ 𝐾) ↾ (1...𝑀))) |
139 | | f1oeq3 6715 |
. . . . . . . 8
⊢ (((𝐺 ∘ 𝐾) “ (1...𝑀)) = ran ((𝐺 ∘ 𝐾) ↾ (1...𝑀)) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→((𝐺 ∘ 𝐾) “ (1...𝑀)) ↔ ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→ran
((𝐺 ∘ 𝐾) ↾ (1...𝑀)))) |
140 | 3, 139 | ax-mp 5 |
. . . . . . 7
⊢ (((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→((𝐺 ∘ 𝐾) “ (1...𝑀)) ↔ ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→ran
((𝐺 ∘ 𝐾) ↾ (1...𝑀))) |
141 | 138, 140 | sylibr 233 |
. . . . . 6
⊢ (𝜑 → ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→((𝐺 ∘ 𝐾) “ (1...𝑀))) |
142 | | f1ofo 6732 |
. . . . . 6
⊢ (((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→((𝐺 ∘ 𝐾) “ (1...𝑀)) → ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–onto→((𝐺 ∘ 𝐾) “ (1...𝑀))) |
143 | 141, 142 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–onto→((𝐺 ∘ 𝐾) “ (1...𝑀))) |
144 | | fofi 9114 |
. . . . 5
⊢
(((1...𝑀) ∈ Fin
∧ ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–onto→((𝐺 ∘ 𝐾) “ (1...𝑀))) → ((𝐺 ∘ 𝐾) “ (1...𝑀)) ∈ Fin) |
145 | 40, 143, 144 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝐺 ∘ 𝐾) “ (1...𝑀)) ∈ Fin) |
146 | | fimaxre2 11929 |
. . . 4
⊢ ((((𝐺 ∘ 𝐾) “ (1...𝑀)) ⊆ ℝ ∧ ((𝐺 ∘ 𝐾) “ (1...𝑀)) ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥) |
147 | 23, 145, 146 | syl2anc 584 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥) |
148 | 39, 147 | r19.29a 3219 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ ℕ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧) |
149 | 88, 87 | resubcld 11412 |
. . . . 5
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
150 | 149 | rexrd 11034 |
. . . 4
⊢ (𝜑 → (𝐵 − 𝐴) ∈
ℝ*) |
151 | 150 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (𝐵 − 𝐴) ∈
ℝ*) |
152 | | fzfid 13702 |
. . . . . 6
⊢ (𝜑 → (1...𝑧) ∈ Fin) |
153 | | elfznn 13294 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...𝑧) → 𝑗 ∈ ℕ) |
154 | | eqid 2739 |
. . . . . . . . . . . 12
⊢ ((abs
∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) |
155 | 154 | ovolfsf 24644 |
. . . . . . . . . . 11
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞)) |
156 | 91, 155 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐹):ℕ⟶(0[,)+∞)) |
157 | 156 | ffvelrnda 6970 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑗) ∈ (0[,)+∞)) |
158 | 153, 157 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑧)) → (((abs ∘ − ) ∘
𝐹)‘𝑗) ∈ (0[,)+∞)) |
159 | | elrege0 13195 |
. . . . . . . 8
⊢ ((((abs
∘ − ) ∘ 𝐹)‘𝑗) ∈ (0[,)+∞) ↔ ((((abs
∘ − ) ∘ 𝐹)‘𝑗) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐹)‘𝑗))) |
160 | 158, 159 | sylib 217 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑧)) → ((((abs ∘ − ) ∘
𝐹)‘𝑗) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐹)‘𝑗))) |
161 | 160 | simpld 495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑧)) → (((abs ∘ − ) ∘
𝐹)‘𝑗) ∈ ℝ) |
162 | 152, 161 | fsumrecl 15455 |
. . . . 5
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗) ∈ ℝ) |
163 | 162 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗) ∈ ℝ) |
164 | 163 | rexrd 11034 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗) ∈
ℝ*) |
165 | 154, 90 | ovolsf 24645 |
. . . . . . . . 9
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
166 | 91, 165 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
167 | 166 | frnd 6617 |
. . . . . . 7
⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
168 | | rge0ssre 13197 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℝ |
169 | 167, 168 | sstrdi 3934 |
. . . . . 6
⊢ (𝜑 → ran 𝑆 ⊆ ℝ) |
170 | | ressxr 11028 |
. . . . . 6
⊢ ℝ
⊆ ℝ* |
171 | 169, 170 | sstrdi 3934 |
. . . . 5
⊢ (𝜑 → ran 𝑆 ⊆
ℝ*) |
172 | | supxrcl 13058 |
. . . . 5
⊢ (ran
𝑆 ⊆
ℝ* → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
173 | 171, 172 | syl 17 |
. . . 4
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
174 | 173 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
175 | 149 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (𝐵 − 𝐴) ∈ ℝ) |
176 | 21 | sselda 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑗 ∈ ℕ) |
177 | 168, 157 | sselid 3920 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑗) ∈ ℝ) |
178 | 176, 177 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → (((abs ∘ − ) ∘
𝐹)‘𝑗) ∈ ℝ) |
179 | 145, 178 | fsumrecl 15455 |
. . . . 5
⊢ (𝜑 → Σ𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))(((abs ∘ − ) ∘ 𝐹)‘𝑗) ∈ ℝ) |
180 | 179 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → Σ𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))(((abs ∘ − ) ∘ 𝐹)‘𝑗) ∈ ℝ) |
181 | | inss2 4164 |
. . . . . . . . . . 11
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ ×
ℝ) |
182 | | fss 6626 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ))
⊆ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
183 | 91, 181, 182 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
184 | 62, 111 | sselid 3920 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℕ) |
185 | 14, 184 | ffvelrnd 6971 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾‘𝑀) ∈ 𝑈) |
186 | 4, 185 | ffvelrnd 6971 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘(𝐾‘𝑀)) ∈ ℕ) |
187 | 183, 186 | ffvelrnd 6971 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐺‘(𝐾‘𝑀))) ∈ (ℝ ×
ℝ)) |
188 | | xp2nd 7873 |
. . . . . . . . 9
⊢ ((𝐹‘(𝐺‘(𝐾‘𝑀))) ∈ (ℝ × ℝ) →
(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) ∈ ℝ) |
189 | 187, 188 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) ∈ ℝ) |
190 | 12, 8 | sselid 3920 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ 𝑈) |
191 | 4, 190 | ffvelrnd 6971 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝐶) ∈ ℕ) |
192 | 183, 191 | ffvelrnd 6971 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐺‘𝐶)) ∈ (ℝ ×
ℝ)) |
193 | | xp1st 7872 |
. . . . . . . . 9
⊢ ((𝐹‘(𝐺‘𝐶)) ∈ (ℝ × ℝ) →
(1st ‘(𝐹‘(𝐺‘𝐶))) ∈ ℝ) |
194 | 192, 193 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘(𝐹‘(𝐺‘𝐶))) ∈ ℝ) |
195 | 189, 194 | resubcld 11412 |
. . . . . . 7
⊢ (𝜑 → ((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) ∈ ℝ) |
196 | | fveq2 6783 |
. . . . . . . . . 10
⊢ (𝑗 = (𝐺‘(𝐾‘𝑖)) → (((abs ∘ − ) ∘
𝐹)‘𝑗) = (((abs ∘ − ) ∘ 𝐹)‘(𝐺‘(𝐾‘𝑖)))) |
197 | 177 | recnd 11012 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑗) ∈ ℂ) |
198 | 176, 197 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → (((abs ∘ − ) ∘
𝐹)‘𝑗) ∈ ℂ) |
199 | 196, 40, 141, 46, 198 | fsumf1o 15444 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))(((abs ∘ − ) ∘ 𝐹)‘𝑗) = Σ𝑖 ∈ (1...𝑀)(((abs ∘ − ) ∘ 𝐹)‘(𝐺‘(𝐾‘𝑖)))) |
200 | 4 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐺:𝑈⟶ℕ) |
201 | | ffvelrn 6968 |
. . . . . . . . . . . . 13
⊢ ((𝐾:ℕ⟶𝑈 ∧ 𝑖 ∈ ℕ) → (𝐾‘𝑖) ∈ 𝑈) |
202 | 14, 43, 201 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐾‘𝑖) ∈ 𝑈) |
203 | 200, 202 | ffvelrnd 6971 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘(𝐾‘𝑖)) ∈ ℕ) |
204 | 154 | ovolfsval 24643 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (𝐺‘(𝐾‘𝑖)) ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝐺‘(𝐾‘𝑖))) = ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))))) |
205 | 91, 203, 204 | syl2an2r 682 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (((abs ∘ − ) ∘
𝐹)‘(𝐺‘(𝐾‘𝑖))) = ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))))) |
206 | 205 | sumeq2dv 15424 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)(((abs ∘ − ) ∘ 𝐹)‘(𝐺‘(𝐾‘𝑖))) = Σ𝑖 ∈ (1...𝑀)((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))))) |
207 | 183 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
208 | 4 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝐺:𝑈⟶ℕ) |
209 | 14 | ffvelrnda 6970 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐾‘𝑖) ∈ 𝑈) |
210 | 208, 209 | ffvelrnd 6971 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐺‘(𝐾‘𝑖)) ∈ ℕ) |
211 | 207, 210 | ffvelrnd 6971 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘(𝐺‘(𝐾‘𝑖))) ∈ (ℝ ×
ℝ)) |
212 | | xp2nd 7873 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘(𝐺‘(𝐾‘𝑖))) ∈ (ℝ × ℝ) →
(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ) |
213 | 211, 212 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ) |
214 | 43, 213 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ) |
215 | 214 | recnd 11012 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℂ) |
216 | 183 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
217 | 216, 203 | ffvelrnd 6971 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐹‘(𝐺‘(𝐾‘𝑖))) ∈ (ℝ ×
ℝ)) |
218 | | xp1st 7872 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘(𝐺‘(𝐾‘𝑖))) ∈ (ℝ × ℝ) →
(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ) |
219 | 217, 218 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ) |
220 | 219 | recnd 11012 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℂ) |
221 | 40, 215, 220 | fsumsub 15509 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) = (Σ𝑖 ∈ (1...𝑀)(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))))) |
222 | | fzfid 13702 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1...(𝑀 − 1)) ∈ Fin) |
223 | | elfznn 13294 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℕ) |
224 | 223, 213 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ) |
225 | 222, 224 | fsumrecl 15455 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ) |
226 | 225 | recnd 11012 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℂ) |
227 | 189 | recnd 11012 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) ∈ ℂ) |
228 | 65, 111 | sselid 3920 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
229 | | 2fveq3 6788 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑀 → (𝐺‘(𝐾‘𝑖)) = (𝐺‘(𝐾‘𝑀))) |
230 | 229 | fveq2d 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑀 → (𝐹‘(𝐺‘(𝐾‘𝑖))) = (𝐹‘(𝐺‘(𝐾‘𝑀)))) |
231 | 230 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑀 → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀))))) |
232 | 228, 215,
231 | fsumm1 15472 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) + (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))))) |
233 | 226, 227,
232 | comraddd 11198 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) + Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))))) |
234 | | 2fveq3 6788 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 1 → (𝐺‘(𝐾‘𝑖)) = (𝐺‘(𝐾‘1))) |
235 | 234 | fveq2d 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 1 → (𝐹‘(𝐺‘(𝐾‘𝑖))) = (𝐹‘(𝐺‘(𝐾‘1)))) |
236 | 235 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 1 → (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (1st ‘(𝐹‘(𝐺‘(𝐾‘1))))) |
237 | 228, 220,
236 | fsum1p 15474 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = ((1st ‘(𝐹‘(𝐺‘(𝐾‘1)))) + Σ𝑖 ∈ ((1 + 1)...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))))) |
238 | 5, 6, 7, 8 | algr0 16286 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐾‘1) = 𝐶) |
239 | 238 | fveq2d 6787 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘(𝐾‘1)) = (𝐺‘𝐶)) |
240 | 239 | fveq2d 6787 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘(𝐺‘(𝐾‘1))) = (𝐹‘(𝐺‘𝐶))) |
241 | 240 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1st
‘(𝐹‘(𝐺‘(𝐾‘1)))) = (1st ‘(𝐹‘(𝐺‘𝐶)))) |
242 | 7 | peano2zd 12438 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1 + 1) ∈
ℤ) |
243 | 184 | nnzd 12434 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ ℤ) |
244 | | 1z 12359 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℤ |
245 | | fzp1ss 13316 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
ℤ → ((1 + 1)...𝑀) ⊆ (1...𝑀)) |
246 | 244, 245 | mp1i 13 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((1 + 1)...𝑀) ⊆ (1...𝑀)) |
247 | 246 | sselda 3922 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ ((1 + 1)...𝑀)) → 𝑖 ∈ (1...𝑀)) |
248 | 247, 220 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ((1 + 1)...𝑀)) → (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℂ) |
249 | | 2fveq3 6788 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑗 + 1) → (𝐺‘(𝐾‘𝑖)) = (𝐺‘(𝐾‘(𝑗 + 1)))) |
250 | 249 | fveq2d 6787 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 + 1) → (𝐹‘(𝐺‘(𝐾‘𝑖))) = (𝐹‘(𝐺‘(𝐾‘(𝑗 + 1))))) |
251 | 250 | fveq2d 6787 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝑗 + 1) → (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑗 + 1)))))) |
252 | 7, 242, 243, 248, 251 | fsumshftm 15502 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Σ𝑖 ∈ ((1 + 1)...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = Σ𝑗 ∈ (((1 + 1) − 1)...(𝑀 − 1))(1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑗 + 1)))))) |
253 | | ax-1cn 10938 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℂ |
254 | 253, 253 | pncan3oi 11246 |
. . . . . . . . . . . . . . . . 17
⊢ ((1 + 1)
− 1) = 1 |
255 | 254 | oveq1i 7294 |
. . . . . . . . . . . . . . . 16
⊢ (((1 + 1)
− 1)...(𝑀 − 1))
= (1...(𝑀 −
1)) |
256 | 255 | sumeq1i 15419 |
. . . . . . . . . . . . . . 15
⊢
Σ𝑗 ∈ (((1
+ 1) − 1)...(𝑀
− 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑗 + 1))))) = Σ𝑗 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑗 + 1))))) |
257 | | fvoveq1 7307 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑖 → (𝐾‘(𝑗 + 1)) = (𝐾‘(𝑖 + 1))) |
258 | 257 | fveq2d 6787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑖 → (𝐺‘(𝐾‘(𝑗 + 1))) = (𝐺‘(𝐾‘(𝑖 + 1)))) |
259 | 258 | fveq2d 6787 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑖 → (𝐹‘(𝐺‘(𝐾‘(𝑗 + 1)))) = (𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) |
260 | 259 | fveq2d 6787 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑖 → (1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑗 + 1))))) = (1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))) |
261 | 260 | cbvsumv 15417 |
. . . . . . . . . . . . . . 15
⊢
Σ𝑗 ∈
(1...(𝑀 −
1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑗 + 1))))) = Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) |
262 | 256, 261 | eqtri 2767 |
. . . . . . . . . . . . . 14
⊢
Σ𝑗 ∈ (((1
+ 1) − 1)...(𝑀
− 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑗 + 1))))) = Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) |
263 | 252, 262 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Σ𝑖 ∈ ((1 + 1)...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))) |
264 | 241, 263 | oveq12d 7302 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((1st
‘(𝐹‘(𝐺‘(𝐾‘1)))) + Σ𝑖 ∈ ((1 + 1)...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) = ((1st ‘(𝐹‘(𝐺‘𝐶))) + Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))))) |
265 | 237, 264 | eqtrd 2779 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = ((1st ‘(𝐹‘(𝐺‘𝐶))) + Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))))) |
266 | 233, 265 | oveq12d 7302 |
. . . . . . . . . 10
⊢ (𝜑 → (Σ𝑖 ∈ (1...𝑀)(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) = (((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) + Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) − ((1st ‘(𝐹‘(𝐺‘𝐶))) + Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
267 | 194 | recnd 11012 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘(𝐹‘(𝐺‘𝐶))) ∈ ℂ) |
268 | | peano2nn 11994 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ℕ → (𝑖 + 1) ∈
ℕ) |
269 | | ffvelrn 6968 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾:ℕ⟶𝑈 ∧ (𝑖 + 1) ∈ ℕ) → (𝐾‘(𝑖 + 1)) ∈ 𝑈) |
270 | 14, 268, 269 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐾‘(𝑖 + 1)) ∈ 𝑈) |
271 | 208, 270 | ffvelrnd 6971 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐺‘(𝐾‘(𝑖 + 1))) ∈ ℕ) |
272 | 207, 271 | ffvelrnd 6971 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))) ∈ (ℝ ×
ℝ)) |
273 | | xp1st 7872 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))) ∈ (ℝ × ℝ)
→ (1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ∈ ℝ) |
274 | 272, 273 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ∈ ℝ) |
275 | 223, 274 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ∈ ℝ) |
276 | 222, 275 | fsumrecl 15455 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ∈ ℝ) |
277 | 276 | recnd 11012 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ∈ ℂ) |
278 | 227, 226,
267, 277 | addsub4d 11388 |
. . . . . . . . . 10
⊢ (𝜑 → (((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) + Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) − ((1st ‘(𝐹‘(𝐺‘𝐶))) + Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))))) = (((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) + (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
279 | 221, 266,
278 | 3eqtrd 2783 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) = (((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) + (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
280 | 199, 206,
279 | 3eqtrd 2783 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))(((abs ∘ − ) ∘ 𝐹)‘𝑗) = (((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) + (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
281 | 280, 179 | eqeltrrd 2841 |
. . . . . . 7
⊢ (𝜑 → (((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) + (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))))) ∈ ℝ) |
282 | | fveq2 6783 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑀 → (𝐾‘𝑛) = (𝐾‘𝑀)) |
283 | 282 | eleq2d 2825 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑀 → (𝐵 ∈ (𝐾‘𝑛) ↔ 𝐵 ∈ (𝐾‘𝑀))) |
284 | 283, 61 | elrab2 3628 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ 𝑊 ↔ (𝑀 ∈ ℕ ∧ 𝐵 ∈ (𝐾‘𝑀))) |
285 | 111, 284 | sylib 217 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝐵 ∈ (𝐾‘𝑀))) |
286 | 285 | simprd 496 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ (𝐾‘𝑀)) |
287 | 87, 88, 89, 90, 91, 67, 92, 4, 93 | ovolicc2lem1 24690 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐾‘𝑀) ∈ 𝑈) → (𝐵 ∈ (𝐾‘𝑀) ↔ (𝐵 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) < 𝐵 ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀))))))) |
288 | 185, 287 | mpdan 684 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 ∈ (𝐾‘𝑀) ↔ (𝐵 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) < 𝐵 ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀))))))) |
289 | 286, 288 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) < 𝐵 ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))))) |
290 | 289 | simp3d 1143 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀))))) |
291 | 87, 88, 89, 90, 91, 67, 92, 4, 93 | ovolicc2lem1 24690 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ∈ 𝑈) → (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘𝐶))) < 𝐴 ∧ 𝐴 < (2nd ‘(𝐹‘(𝐺‘𝐶)))))) |
292 | 190, 291 | mpdan 684 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘𝐶))) < 𝐴 ∧ 𝐴 < (2nd ‘(𝐹‘(𝐺‘𝐶)))))) |
293 | 95, 292 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘𝐶))) < 𝐴 ∧ 𝐴 < (2nd ‘(𝐹‘(𝐺‘𝐶))))) |
294 | 293 | simp2d 1142 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘(𝐹‘(𝐺‘𝐶))) < 𝐴) |
295 | 88, 194, 189, 87, 290, 294 | lt2subd 11608 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 − 𝐴) < ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶))))) |
296 | 149, 195,
295 | ltled 11132 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − 𝐴) ≤ ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶))))) |
297 | 223 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℕ) |
298 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (1...(𝑀 − 1))) |
299 | 243 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℤ) |
300 | | elfzm11 13336 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1
∈ ℤ ∧ 𝑀
∈ ℤ) → (𝑖
∈ (1...(𝑀 − 1))
↔ (𝑖 ∈ ℤ
∧ 1 ≤ 𝑖 ∧ 𝑖 < 𝑀))) |
301 | 244, 299,
300 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ (1...(𝑀 − 1)) ↔ (𝑖 ∈ ℤ ∧ 1 ≤ 𝑖 ∧ 𝑖 < 𝑀))) |
302 | 298, 301 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ ℤ ∧ 1 ≤ 𝑖 ∧ 𝑖 < 𝑀)) |
303 | 302 | simp3d 1143 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 < 𝑀) |
304 | 297 | nnred 11997 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℝ) |
305 | 112 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℝ) |
306 | 304, 305 | ltnled 11131 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑖)) |
307 | 303, 306 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → ¬ 𝑀 ≤ 𝑖) |
308 | | infssuzle 12680 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑊 ⊆
(ℤ≥‘1) ∧ 𝑖 ∈ 𝑊) → inf(𝑊, ℝ, < ) ≤ 𝑖) |
309 | 65, 308 | mpan 687 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ 𝑊 → inf(𝑊, ℝ, < ) ≤ 𝑖) |
310 | 64, 309 | eqbrtrid 5110 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ 𝑊 → 𝑀 ≤ 𝑖) |
311 | 307, 310 | nsyl 140 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → ¬ 𝑖 ∈ 𝑊) |
312 | 297, 311 | jca 512 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ ℕ ∧ ¬ 𝑖 ∈ 𝑊)) |
313 | 87, 88, 89, 90, 91, 67, 92, 4, 93, 11, 9, 94, 95, 8, 6, 61 | ovolicc2lem2 24691 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ¬ 𝑖 ∈ 𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ≤ 𝐵) |
314 | 312, 313 | syldan 591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ≤ 𝐵) |
315 | 314 | iftrued 4468 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → if((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))), 𝐵) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) |
316 | | 2fveq3 6788 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = (𝐾‘𝑖) → (𝐹‘(𝐺‘𝑡)) = (𝐹‘(𝐺‘(𝐾‘𝑖)))) |
317 | 316 | fveq2d 6787 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = (𝐾‘𝑖) → (2nd ‘(𝐹‘(𝐺‘𝑡))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) |
318 | 317 | breq1d 5085 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (𝐾‘𝑖) → ((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵 ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ≤ 𝐵)) |
319 | 318, 317 | ifbieq1d 4484 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (𝐾‘𝑖) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) = if((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))), 𝐵)) |
320 | | fveq2 6783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (𝐾‘𝑖) → (𝐻‘𝑡) = (𝐻‘(𝐾‘𝑖))) |
321 | 319, 320 | eleq12d 2834 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (𝐾‘𝑖) → (if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡) ↔ if((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))), 𝐵) ∈ (𝐻‘(𝐾‘𝑖)))) |
322 | 94 | ralrimiva 3104 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) |
323 | 322 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → ∀𝑡 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) |
324 | | ffvelrn 6968 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾:ℕ⟶𝑇 ∧ 𝑖 ∈ ℕ) → (𝐾‘𝑖) ∈ 𝑇) |
325 | 10, 223, 324 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝐾‘𝑖) ∈ 𝑇) |
326 | 321, 323,
325 | rspcdva 3563 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → if((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))), 𝐵) ∈ (𝐻‘(𝐾‘𝑖))) |
327 | 315, 326 | eqeltrrd 2841 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ (𝐻‘(𝐾‘𝑖))) |
328 | 5, 6, 7, 8, 9 | algrp1 16288 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐾‘(𝑖 + 1)) = (𝐻‘(𝐾‘𝑖))) |
329 | 223, 328 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝐾‘(𝑖 + 1)) = (𝐻‘(𝐾‘𝑖))) |
330 | 327, 329 | eleqtrrd 2843 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ (𝐾‘(𝑖 + 1))) |
331 | 223, 270 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝐾‘(𝑖 + 1)) ∈ 𝑈) |
332 | 87, 88, 89, 90, 91, 67, 92, 4, 93 | ovolicc2lem1 24690 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐾‘(𝑖 + 1)) ∈ 𝑈) → ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ (𝐾‘(𝑖 + 1)) ↔ ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∧ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
333 | 331, 332 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → ((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ (𝐾‘(𝑖 + 1)) ↔ ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∧ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
334 | 330, 333 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → ((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∧ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))))) |
335 | 334 | simp2d 1142 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) |
336 | 275, 224,
335 | ltled 11132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ≤ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) |
337 | 222, 275,
224, 336 | fsumle 15520 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ≤ Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) |
338 | 225, 276 | subge0d 11574 |
. . . . . . . . 9
⊢ (𝜑 → (0 ≤ (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))) ↔ Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ≤ Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))))) |
339 | 337, 338 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))))) |
340 | 225, 276 | resubcld 11412 |
. . . . . . . . 9
⊢ (𝜑 → (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))) ∈ ℝ) |
341 | 195, 340 | addge01d 11572 |
. . . . . . . 8
⊢ (𝜑 → (0 ≤ (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))) ↔ ((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) ≤ (((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) + (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))))))) |
342 | 339, 341 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) ≤ (((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) + (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
343 | 149, 195,
281, 296, 342 | letrd 11141 |
. . . . . 6
⊢ (𝜑 → (𝐵 − 𝐴) ≤ (((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) + (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
344 | 343, 280 | breqtrrd 5103 |
. . . . 5
⊢ (𝜑 → (𝐵 − 𝐴) ≤ Σ𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))(((abs ∘ − ) ∘ 𝐹)‘𝑗)) |
345 | 344 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (𝐵 − 𝐴) ≤ Σ𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))(((abs ∘ − ) ∘ 𝐹)‘𝑗)) |
346 | | fzfid 13702 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (1...𝑧) ∈ Fin) |
347 | 161 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) ∧ 𝑗 ∈ (1...𝑧)) → (((abs ∘ − ) ∘
𝐹)‘𝑗) ∈ ℝ) |
348 | 160 | simprd 496 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑧)) → 0 ≤ (((abs ∘ − )
∘ 𝐹)‘𝑗)) |
349 | 348 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) ∧ 𝑗 ∈ (1...𝑧)) → 0 ≤ (((abs ∘ − )
∘ 𝐹)‘𝑗)) |
350 | 21 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ) → ((𝐺 ∘ 𝐾) “ (1...𝑀)) ⊆ ℕ) |
351 | 350 | sselda 3922 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑦 ∈ ℕ) |
352 | 351 | nnred 11997 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑦 ∈ ℝ) |
353 | 28 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑧 ∈ ℝ) |
354 | | ltle 11072 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧 → 𝑦 ≤ 𝑧)) |
355 | 352, 353,
354 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → (𝑦 < 𝑧 → 𝑦 ≤ 𝑧)) |
356 | 351, 5 | eleqtrdi 2850 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑦 ∈
(ℤ≥‘1)) |
357 | | nnz 12351 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℤ) |
358 | 357 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑧 ∈ ℤ) |
359 | | elfz5 13257 |
. . . . . . . . . 10
⊢ ((𝑦 ∈
(ℤ≥‘1) ∧ 𝑧 ∈ ℤ) → (𝑦 ∈ (1...𝑧) ↔ 𝑦 ≤ 𝑧)) |
360 | 356, 358,
359 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → (𝑦 ∈ (1...𝑧) ↔ 𝑦 ≤ 𝑧)) |
361 | 355, 360 | sylibrd 258 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → (𝑦 < 𝑧 → 𝑦 ∈ (1...𝑧))) |
362 | 361 | ralimdva 3109 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ) → (∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧 → ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ∈ (1...𝑧))) |
363 | 362 | impr 455 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ∈ (1...𝑧)) |
364 | | dfss3 3910 |
. . . . . 6
⊢ (((𝐺 ∘ 𝐾) “ (1...𝑀)) ⊆ (1...𝑧) ↔ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ∈ (1...𝑧)) |
365 | 363, 364 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → ((𝐺 ∘ 𝐾) “ (1...𝑀)) ⊆ (1...𝑧)) |
366 | 346, 347,
349, 365 | fsumless 15517 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → Σ𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))(((abs ∘ − ) ∘ 𝐹)‘𝑗) ≤ Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗)) |
367 | 175, 180,
163, 345, 366 | letrd 11141 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (𝐵 − 𝐴) ≤ Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗)) |
368 | | eqidd 2740 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) ∧ 𝑗 ∈ (1...𝑧)) → (((abs ∘ − ) ∘
𝐹)‘𝑗) = (((abs ∘ − ) ∘ 𝐹)‘𝑗)) |
369 | | simprl 768 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → 𝑧 ∈ ℕ) |
370 | 369, 5 | eleqtrdi 2850 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → 𝑧 ∈
(ℤ≥‘1)) |
371 | 347 | recnd 11012 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) ∧ 𝑗 ∈ (1...𝑧)) → (((abs ∘ − ) ∘
𝐹)‘𝑗) ∈ ℂ) |
372 | 368, 370,
371 | fsumser 15451 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑧)) |
373 | 90 | fveq1i 6784 |
. . . . 5
⊢ (𝑆‘𝑧) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑧) |
374 | 372, 373 | eqtr4di 2797 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗) = (𝑆‘𝑧)) |
375 | 166 | ffnd 6610 |
. . . . . 6
⊢ (𝜑 → 𝑆 Fn ℕ) |
376 | | fnfvelrn 6967 |
. . . . . 6
⊢ ((𝑆 Fn ℕ ∧ 𝑧 ∈ ℕ) → (𝑆‘𝑧) ∈ ran 𝑆) |
377 | 375, 369,
376 | syl2an2r 682 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (𝑆‘𝑧) ∈ ran 𝑆) |
378 | | supxrub 13067 |
. . . . 5
⊢ ((ran
𝑆 ⊆
ℝ* ∧ (𝑆‘𝑧) ∈ ran 𝑆) → (𝑆‘𝑧) ≤ sup(ran 𝑆, ℝ*, <
)) |
379 | 171, 377,
378 | syl2an2r 682 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (𝑆‘𝑧) ≤ sup(ran 𝑆, ℝ*, <
)) |
380 | 374, 379 | eqbrtrd 5097 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗) ≤ sup(ran 𝑆, ℝ*, <
)) |
381 | 151, 164,
174, 367, 380 | xrletrd 12905 |
. 2
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, <
)) |
382 | 148, 381 | rexlimddv 3221 |
1
⊢ (𝜑 → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, <
)) |