| Step | Hyp | Ref
| Expression |
| 1 | | arch 12523 |
. . . . 5
⊢ (𝑥 ∈ ℝ →
∃𝑧 ∈ ℕ
𝑥 < 𝑧) |
| 2 | 1 | ad2antlr 727 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥) → ∃𝑧 ∈ ℕ 𝑥 < 𝑧) |
| 3 | | df-ima 5698 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∘ 𝐾) “ (1...𝑀)) = ran ((𝐺 ∘ 𝐾) ↾ (1...𝑀)) |
| 4 | | ovolicc2.8 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐺:𝑈⟶ℕ) |
| 5 | | nnuz 12921 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℕ =
(ℤ≥‘1) |
| 6 | | ovolicc2.15 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ ×
{𝐶})) |
| 7 | | 1zzd 12648 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 1 ∈
ℤ) |
| 8 | | ovolicc2.14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐶 ∈ 𝑇) |
| 9 | | ovolicc2.11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐻:𝑇⟶𝑇) |
| 10 | 5, 6, 7, 8, 9 | algrf 16610 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐾:ℕ⟶𝑇) |
| 11 | | ovolicc2.10 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} |
| 12 | 11 | ssrab3 4082 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑇 ⊆ 𝑈 |
| 13 | | fss 6752 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾:ℕ⟶𝑇 ∧ 𝑇 ⊆ 𝑈) → 𝐾:ℕ⟶𝑈) |
| 14 | 10, 12, 13 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾:ℕ⟶𝑈) |
| 15 | | fco 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺:𝑈⟶ℕ ∧ 𝐾:ℕ⟶𝑈) → (𝐺 ∘ 𝐾):ℕ⟶ℕ) |
| 16 | 4, 14, 15 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐺 ∘ 𝐾):ℕ⟶ℕ) |
| 17 | | fz1ssnn 13595 |
. . . . . . . . . . . . . . . . . 18
⊢
(1...𝑀) ⊆
ℕ |
| 18 | | fssres 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∘ 𝐾):ℕ⟶ℕ ∧ (1...𝑀) ⊆ ℕ) →
((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)⟶ℕ) |
| 19 | 16, 17, 18 | sylancl 586 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)⟶ℕ) |
| 20 | 19 | frnd 6744 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ran ((𝐺 ∘ 𝐾) ↾ (1...𝑀)) ⊆ ℕ) |
| 21 | 3, 20 | eqsstrid 4022 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐺 ∘ 𝐾) “ (1...𝑀)) ⊆ ℕ) |
| 22 | | nnssre 12270 |
. . . . . . . . . . . . . . 15
⊢ ℕ
⊆ ℝ |
| 23 | 21, 22 | sstrdi 3996 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺 ∘ 𝐾) “ (1...𝑀)) ⊆ ℝ) |
| 24 | 23 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → ((𝐺 ∘ 𝐾) “ (1...𝑀)) ⊆ ℝ) |
| 25 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) |
| 26 | 24, 25 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑦 ∈ ℝ) |
| 27 | | simpllr 776 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑥 ∈ ℝ) |
| 28 | | nnre 12273 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℝ) |
| 29 | 28 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑧 ∈ ℝ) |
| 30 | | lelttr 11351 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 ≤ 𝑥 ∧ 𝑥 < 𝑧) → 𝑦 < 𝑧)) |
| 31 | 26, 27, 29, 30 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → ((𝑦 ≤ 𝑥 ∧ 𝑥 < 𝑧) → 𝑦 < 𝑧)) |
| 32 | 31 | ancomsd 465 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → ((𝑥 < 𝑧 ∧ 𝑦 ≤ 𝑥) → 𝑦 < 𝑧)) |
| 33 | 32 | expdimp 452 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) ∧ 𝑥 < 𝑧) → (𝑦 ≤ 𝑥 → 𝑦 < 𝑧)) |
| 34 | 33 | an32s 652 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑥 < 𝑧) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → (𝑦 ≤ 𝑥 → 𝑦 < 𝑧)) |
| 35 | 34 | ralimdva 3167 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ 𝑥 < 𝑧) → (∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥 → ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) |
| 36 | 35 | impancom 451 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℕ) ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥) → (𝑥 < 𝑧 → ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) |
| 37 | 36 | an32s 652 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥) ∧ 𝑧 ∈ ℕ) → (𝑥 < 𝑧 → ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) |
| 38 | 37 | reximdva 3168 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥) → (∃𝑧 ∈ ℕ 𝑥 < 𝑧 → ∃𝑧 ∈ ℕ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) |
| 39 | 2, 38 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥) → ∃𝑧 ∈ ℕ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧) |
| 40 | | fzfid 14014 |
. . . . 5
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
| 41 | | fvres 6925 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑀) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = ((𝐺 ∘ 𝐾)‘𝑖)) |
| 42 | 41 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = ((𝐺 ∘ 𝐾)‘𝑖)) |
| 43 | | elfznn 13593 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℕ) |
| 44 | | fvco3 7008 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾:ℕ⟶𝑇 ∧ 𝑖 ∈ ℕ) → ((𝐺 ∘ 𝐾)‘𝑖) = (𝐺‘(𝐾‘𝑖))) |
| 45 | 10, 43, 44 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺 ∘ 𝐾)‘𝑖) = (𝐺‘(𝐾‘𝑖))) |
| 46 | 42, 45 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = (𝐺‘(𝐾‘𝑖))) |
| 47 | 46 | adantrr 717 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = (𝐺‘(𝐾‘𝑖))) |
| 48 | | fvres 6925 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...𝑀) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑗) = ((𝐺 ∘ 𝐾)‘𝑗)) |
| 49 | 48 | ad2antll 729 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑗) = ((𝐺 ∘ 𝐾)‘𝑗)) |
| 50 | | elfznn 13593 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ) |
| 51 | 50 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ ℕ) |
| 52 | | fvco3 7008 |
. . . . . . . . . . . . . 14
⊢ ((𝐾:ℕ⟶𝑇 ∧ 𝑗 ∈ ℕ) → ((𝐺 ∘ 𝐾)‘𝑗) = (𝐺‘(𝐾‘𝑗))) |
| 53 | 10, 51, 52 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → ((𝐺 ∘ 𝐾)‘𝑗) = (𝐺‘(𝐾‘𝑗))) |
| 54 | 49, 53 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑗) = (𝐺‘(𝐾‘𝑗))) |
| 55 | 47, 54 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → ((((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑗) ↔ (𝐺‘(𝐾‘𝑖)) = (𝐺‘(𝐾‘𝑗)))) |
| 56 | | 2fveq3 6911 |
. . . . . . . . . . . 12
⊢ ((𝐺‘(𝐾‘𝑖)) = (𝐺‘(𝐾‘𝑗)) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑗))))) |
| 57 | 17 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1...𝑀) ⊆ ℕ) |
| 58 | | elfznn 13593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℕ) |
| 59 | 58 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑚 ∈ 𝑊) → 𝑛 ∈ ℕ) |
| 60 | 59 | nnred 12281 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑚 ∈ 𝑊) → 𝑛 ∈ ℝ) |
| 61 | | ovolicc2.16 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾‘𝑛)} |
| 62 | 61 | ssrab3 4082 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑊 ⊆
ℕ |
| 63 | 62, 22 | sstri 3993 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑊 ⊆
ℝ |
| 64 | | ovolicc2.17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑀 = inf(𝑊, ℝ, < ) |
| 65 | 62, 5 | sseqtri 4032 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑊 ⊆
(ℤ≥‘1) |
| 66 | | nnnfi 14007 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ¬
ℕ ∈ Fin |
| 67 | | ovolicc2.6 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) |
| 68 | 67 | elin2d 4205 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑈 ∈ Fin) |
| 69 | | ssfi 9213 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑈 ∈ Fin ∧ 𝑇 ⊆ 𝑈) → 𝑇 ∈ Fin) |
| 70 | 68, 12, 69 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑇 ∈ Fin) |
| 71 | 70 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝑇 ∈ Fin) |
| 72 | 10 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐾:ℕ⟶𝑇) |
| 73 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐾‘𝑖) = (𝐾‘𝑗) → (𝐹‘(𝐺‘(𝐾‘𝑖))) = (𝐹‘(𝐺‘(𝐾‘𝑗)))) |
| 74 | 73 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐾‘𝑖) = (𝐾‘𝑗) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑗))))) |
| 75 | | simpll 767 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝜑) |
| 76 | | simprl 771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑖 ∈ ℕ) |
| 77 | | ral0 4513 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
∀𝑚 ∈
∅ 𝑛 ≤ 𝑚 |
| 78 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑊 = ∅) |
| 79 | 78 | raleqdv 3326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 ↔ ∀𝑚 ∈ ∅ 𝑛 ≤ 𝑚)) |
| 80 | 77, 79 | mpbiri 258 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚) |
| 81 | 80 | ralrimivw 3150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ∀𝑛 ∈ ℕ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚) |
| 82 | | rabid2 3470 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℕ
= {𝑛 ∈ ℕ ∣
∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚} ↔ ∀𝑛 ∈ ℕ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚) |
| 83 | 81, 82 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ℕ = {𝑛 ∈ ℕ ∣
∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚}) |
| 84 | 76, 83 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑖 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚}) |
| 85 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑗 ∈ ℕ) |
| 86 | 85, 83 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑗 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚}) |
| 87 | | ovolicc.1 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 88 | | ovolicc.2 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 89 | | ovolicc.3 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 90 | | ovolicc2.4 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
| 91 | | ovolicc2.5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 92 | | ovolicc2.7 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) |
| 93 | | ovolicc2.9 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) |
| 94 | | ovolicc2.12 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) |
| 95 | | ovolicc2.13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| 96 | 87, 88, 89, 90, 91, 67, 92, 4, 93, 11, 9, 94, 95, 8, 6, 61 | ovolicc2lem3 25554 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑖 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚} ∧ 𝑗 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚})) → (𝑖 = 𝑗 ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑗)))))) |
| 97 | 75, 84, 86, 96 | syl12anc 837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 = 𝑗 ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑗)))))) |
| 98 | 74, 97 | imbitrrid 246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝐾‘𝑖) = (𝐾‘𝑗) → 𝑖 = 𝑗)) |
| 99 | 98 | ralrimivva 3202 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑊 = ∅) → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℕ ((𝐾‘𝑖) = (𝐾‘𝑗) → 𝑖 = 𝑗)) |
| 100 | | dff13 7275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐾:ℕ–1-1→𝑇 ↔ (𝐾:ℕ⟶𝑇 ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℕ ((𝐾‘𝑖) = (𝐾‘𝑗) → 𝑖 = 𝑗))) |
| 101 | 72, 99, 100 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐾:ℕ–1-1→𝑇) |
| 102 | | f1domg 9012 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑇 ∈ Fin → (𝐾:ℕ–1-1→𝑇 → ℕ ≼ 𝑇)) |
| 103 | 71, 101, 102 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑊 = ∅) → ℕ ≼ 𝑇) |
| 104 | | domfi 9229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑇 ∈ Fin ∧ ℕ
≼ 𝑇) → ℕ
∈ Fin) |
| 105 | 70, 103, 104 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑊 = ∅) → ℕ ∈
Fin) |
| 106 | 105 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑊 = ∅ → ℕ ∈
Fin)) |
| 107 | 106 | necon3bd 2954 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (¬ ℕ ∈ Fin
→ 𝑊 ≠
∅)) |
| 108 | 66, 107 | mpi 20 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑊 ≠ ∅) |
| 109 | | infssuzcl 12974 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑊 ⊆
(ℤ≥‘1) ∧ 𝑊 ≠ ∅) → inf(𝑊, ℝ, < ) ∈ 𝑊) |
| 110 | 65, 108, 109 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → inf(𝑊, ℝ, < ) ∈ 𝑊) |
| 111 | 64, 110 | eqeltrid 2845 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑀 ∈ 𝑊) |
| 112 | 63, 111 | sselid 3981 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 113 | 112 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑚 ∈ 𝑊) → 𝑀 ∈ ℝ) |
| 114 | 63 | sseli 3979 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ 𝑊 → 𝑚 ∈ ℝ) |
| 115 | 114 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑚 ∈ 𝑊) → 𝑚 ∈ ℝ) |
| 116 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (1...𝑀) → 𝑛 ≤ 𝑀) |
| 117 | 116 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑚 ∈ 𝑊) → 𝑛 ≤ 𝑀) |
| 118 | | infssuzle 12973 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑊 ⊆
(ℤ≥‘1) ∧ 𝑚 ∈ 𝑊) → inf(𝑊, ℝ, < ) ≤ 𝑚) |
| 119 | 65, 118 | mpan 690 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ 𝑊 → inf(𝑊, ℝ, < ) ≤ 𝑚) |
| 120 | 64, 119 | eqbrtrid 5178 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ 𝑊 → 𝑀 ≤ 𝑚) |
| 121 | 120 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑚 ∈ 𝑊) → 𝑀 ≤ 𝑚) |
| 122 | 60, 113, 115, 117, 121 | letrd 11418 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑚 ∈ 𝑊) → 𝑛 ≤ 𝑚) |
| 123 | 122 | ralrimiva 3146 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚) |
| 124 | 57, 123 | ssrabdv 4074 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1...𝑀) ⊆ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚}) |
| 125 | 124 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → (1...𝑀) ⊆ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚}) |
| 126 | | simprl 771 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → 𝑖 ∈ (1...𝑀)) |
| 127 | 125, 126 | sseldd 3984 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → 𝑖 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚}) |
| 128 | | simprr 773 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → 𝑗 ∈ (1...𝑀)) |
| 129 | 125, 128 | sseldd 3984 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → 𝑗 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚}) |
| 130 | 127, 129 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → (𝑖 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚} ∧ 𝑗 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚})) |
| 131 | 130, 96 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → (𝑖 = 𝑗 ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑗)))))) |
| 132 | 56, 131 | imbitrrid 246 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → ((𝐺‘(𝐾‘𝑖)) = (𝐺‘(𝐾‘𝑗)) → 𝑖 = 𝑗)) |
| 133 | 55, 132 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (1...𝑀) ∧ 𝑗 ∈ (1...𝑀))) → ((((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑗) → 𝑖 = 𝑗)) |
| 134 | 133 | ralrimivva 3202 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)∀𝑗 ∈ (1...𝑀)((((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑗) → 𝑖 = 𝑗)) |
| 135 | | dff13 7275 |
. . . . . . . . 9
⊢ (((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1→ℕ ↔ (((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)⟶ℕ ∧ ∀𝑖 ∈ (1...𝑀)∀𝑗 ∈ (1...𝑀)((((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑖) = (((𝐺 ∘ 𝐾) ↾ (1...𝑀))‘𝑗) → 𝑖 = 𝑗))) |
| 136 | 19, 134, 135 | sylanbrc 583 |
. . . . . . . 8
⊢ (𝜑 → ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1→ℕ) |
| 137 | | f1f1orn 6859 |
. . . . . . . 8
⊢ (((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1→ℕ → ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→ran
((𝐺 ∘ 𝐾) ↾ (1...𝑀))) |
| 138 | 136, 137 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→ran
((𝐺 ∘ 𝐾) ↾ (1...𝑀))) |
| 139 | | f1oeq3 6838 |
. . . . . . . 8
⊢ (((𝐺 ∘ 𝐾) “ (1...𝑀)) = ran ((𝐺 ∘ 𝐾) ↾ (1...𝑀)) → (((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→((𝐺 ∘ 𝐾) “ (1...𝑀)) ↔ ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→ran
((𝐺 ∘ 𝐾) ↾ (1...𝑀)))) |
| 140 | 3, 139 | ax-mp 5 |
. . . . . . 7
⊢ (((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→((𝐺 ∘ 𝐾) “ (1...𝑀)) ↔ ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→ran
((𝐺 ∘ 𝐾) ↾ (1...𝑀))) |
| 141 | 138, 140 | sylibr 234 |
. . . . . 6
⊢ (𝜑 → ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→((𝐺 ∘ 𝐾) “ (1...𝑀))) |
| 142 | | f1ofo 6855 |
. . . . . 6
⊢ (((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→((𝐺 ∘ 𝐾) “ (1...𝑀)) → ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–onto→((𝐺 ∘ 𝐾) “ (1...𝑀))) |
| 143 | 141, 142 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–onto→((𝐺 ∘ 𝐾) “ (1...𝑀))) |
| 144 | | fofi 9351 |
. . . . 5
⊢
(((1...𝑀) ∈ Fin
∧ ((𝐺 ∘ 𝐾) ↾ (1...𝑀)):(1...𝑀)–onto→((𝐺 ∘ 𝐾) “ (1...𝑀))) → ((𝐺 ∘ 𝐾) “ (1...𝑀)) ∈ Fin) |
| 145 | 40, 143, 144 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝐺 ∘ 𝐾) “ (1...𝑀)) ∈ Fin) |
| 146 | | fimaxre2 12213 |
. . . 4
⊢ ((((𝐺 ∘ 𝐾) “ (1...𝑀)) ⊆ ℝ ∧ ((𝐺 ∘ 𝐾) “ (1...𝑀)) ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥) |
| 147 | 23, 145, 146 | syl2anc 584 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ≤ 𝑥) |
| 148 | 39, 147 | r19.29a 3162 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ ℕ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧) |
| 149 | 88, 87 | resubcld 11691 |
. . . . 5
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
| 150 | 149 | rexrd 11311 |
. . . 4
⊢ (𝜑 → (𝐵 − 𝐴) ∈
ℝ*) |
| 151 | 150 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (𝐵 − 𝐴) ∈
ℝ*) |
| 152 | | fzfid 14014 |
. . . . . 6
⊢ (𝜑 → (1...𝑧) ∈ Fin) |
| 153 | | elfznn 13593 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...𝑧) → 𝑗 ∈ ℕ) |
| 154 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ ((abs
∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) |
| 155 | 154 | ovolfsf 25506 |
. . . . . . . . . . 11
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞)) |
| 156 | 91, 155 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐹):ℕ⟶(0[,)+∞)) |
| 157 | 156 | ffvelcdmda 7104 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑗) ∈ (0[,)+∞)) |
| 158 | 153, 157 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑧)) → (((abs ∘ − ) ∘
𝐹)‘𝑗) ∈ (0[,)+∞)) |
| 159 | | elrege0 13494 |
. . . . . . . 8
⊢ ((((abs
∘ − ) ∘ 𝐹)‘𝑗) ∈ (0[,)+∞) ↔ ((((abs
∘ − ) ∘ 𝐹)‘𝑗) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐹)‘𝑗))) |
| 160 | 158, 159 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑧)) → ((((abs ∘ − ) ∘
𝐹)‘𝑗) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐹)‘𝑗))) |
| 161 | 160 | simpld 494 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑧)) → (((abs ∘ − ) ∘
𝐹)‘𝑗) ∈ ℝ) |
| 162 | 152, 161 | fsumrecl 15770 |
. . . . 5
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗) ∈ ℝ) |
| 163 | 162 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗) ∈ ℝ) |
| 164 | 163 | rexrd 11311 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗) ∈
ℝ*) |
| 165 | 154, 90 | ovolsf 25507 |
. . . . . . . . 9
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
| 166 | 91, 165 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
| 167 | 166 | frnd 6744 |
. . . . . . 7
⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
| 168 | | rge0ssre 13496 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℝ |
| 169 | 167, 168 | sstrdi 3996 |
. . . . . 6
⊢ (𝜑 → ran 𝑆 ⊆ ℝ) |
| 170 | | ressxr 11305 |
. . . . . 6
⊢ ℝ
⊆ ℝ* |
| 171 | 169, 170 | sstrdi 3996 |
. . . . 5
⊢ (𝜑 → ran 𝑆 ⊆
ℝ*) |
| 172 | | supxrcl 13357 |
. . . . 5
⊢ (ran
𝑆 ⊆
ℝ* → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
| 173 | 171, 172 | syl 17 |
. . . 4
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
| 174 | 173 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
| 175 | 149 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (𝐵 − 𝐴) ∈ ℝ) |
| 176 | 21 | sselda 3983 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑗 ∈ ℕ) |
| 177 | 168, 157 | sselid 3981 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑗) ∈ ℝ) |
| 178 | 176, 177 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → (((abs ∘ − ) ∘
𝐹)‘𝑗) ∈ ℝ) |
| 179 | 145, 178 | fsumrecl 15770 |
. . . . 5
⊢ (𝜑 → Σ𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))(((abs ∘ − ) ∘ 𝐹)‘𝑗) ∈ ℝ) |
| 180 | 179 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → Σ𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))(((abs ∘ − ) ∘ 𝐹)‘𝑗) ∈ ℝ) |
| 181 | | inss2 4238 |
. . . . . . . . . . 11
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ ×
ℝ) |
| 182 | | fss 6752 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ))
⊆ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
| 183 | 91, 181, 182 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
| 184 | 62, 111 | sselid 3981 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 185 | 14, 184 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾‘𝑀) ∈ 𝑈) |
| 186 | 4, 185 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘(𝐾‘𝑀)) ∈ ℕ) |
| 187 | 183, 186 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐺‘(𝐾‘𝑀))) ∈ (ℝ ×
ℝ)) |
| 188 | | xp2nd 8047 |
. . . . . . . . 9
⊢ ((𝐹‘(𝐺‘(𝐾‘𝑀))) ∈ (ℝ × ℝ) →
(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) ∈ ℝ) |
| 189 | 187, 188 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) ∈ ℝ) |
| 190 | 12, 8 | sselid 3981 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| 191 | 4, 190 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝐶) ∈ ℕ) |
| 192 | 183, 191 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐺‘𝐶)) ∈ (ℝ ×
ℝ)) |
| 193 | | xp1st 8046 |
. . . . . . . . 9
⊢ ((𝐹‘(𝐺‘𝐶)) ∈ (ℝ × ℝ) →
(1st ‘(𝐹‘(𝐺‘𝐶))) ∈ ℝ) |
| 194 | 192, 193 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘(𝐹‘(𝐺‘𝐶))) ∈ ℝ) |
| 195 | 189, 194 | resubcld 11691 |
. . . . . . 7
⊢ (𝜑 → ((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) ∈ ℝ) |
| 196 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑗 = (𝐺‘(𝐾‘𝑖)) → (((abs ∘ − ) ∘
𝐹)‘𝑗) = (((abs ∘ − ) ∘ 𝐹)‘(𝐺‘(𝐾‘𝑖)))) |
| 197 | 177 | recnd 11289 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑗) ∈ ℂ) |
| 198 | 176, 197 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → (((abs ∘ − ) ∘
𝐹)‘𝑗) ∈ ℂ) |
| 199 | 196, 40, 141, 46, 198 | fsumf1o 15759 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))(((abs ∘ − ) ∘ 𝐹)‘𝑗) = Σ𝑖 ∈ (1...𝑀)(((abs ∘ − ) ∘ 𝐹)‘(𝐺‘(𝐾‘𝑖)))) |
| 200 | 4 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐺:𝑈⟶ℕ) |
| 201 | | ffvelcdm 7101 |
. . . . . . . . . . . . 13
⊢ ((𝐾:ℕ⟶𝑈 ∧ 𝑖 ∈ ℕ) → (𝐾‘𝑖) ∈ 𝑈) |
| 202 | 14, 43, 201 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐾‘𝑖) ∈ 𝑈) |
| 203 | 200, 202 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘(𝐾‘𝑖)) ∈ ℕ) |
| 204 | 154 | ovolfsval 25505 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (𝐺‘(𝐾‘𝑖)) ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝐺‘(𝐾‘𝑖))) = ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))))) |
| 205 | 91, 203, 204 | syl2an2r 685 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (((abs ∘ − ) ∘
𝐹)‘(𝐺‘(𝐾‘𝑖))) = ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))))) |
| 206 | 205 | sumeq2dv 15738 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)(((abs ∘ − ) ∘ 𝐹)‘(𝐺‘(𝐾‘𝑖))) = Σ𝑖 ∈ (1...𝑀)((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))))) |
| 207 | 183 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
| 208 | 4 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝐺:𝑈⟶ℕ) |
| 209 | 14 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐾‘𝑖) ∈ 𝑈) |
| 210 | 208, 209 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐺‘(𝐾‘𝑖)) ∈ ℕ) |
| 211 | 207, 210 | ffvelcdmd 7105 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘(𝐺‘(𝐾‘𝑖))) ∈ (ℝ ×
ℝ)) |
| 212 | | xp2nd 8047 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘(𝐺‘(𝐾‘𝑖))) ∈ (ℝ × ℝ) →
(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ) |
| 213 | 211, 212 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ) |
| 214 | 43, 213 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ) |
| 215 | 214 | recnd 11289 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℂ) |
| 216 | 183 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
| 217 | 216, 203 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐹‘(𝐺‘(𝐾‘𝑖))) ∈ (ℝ ×
ℝ)) |
| 218 | | xp1st 8046 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘(𝐺‘(𝐾‘𝑖))) ∈ (ℝ × ℝ) →
(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ) |
| 219 | 217, 218 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ) |
| 220 | 219 | recnd 11289 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℂ) |
| 221 | 40, 215, 220 | fsumsub 15824 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) = (Σ𝑖 ∈ (1...𝑀)(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))))) |
| 222 | | fzfid 14014 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1...(𝑀 − 1)) ∈ Fin) |
| 223 | | elfznn 13593 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℕ) |
| 224 | 223, 213 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ) |
| 225 | 222, 224 | fsumrecl 15770 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ) |
| 226 | 225 | recnd 11289 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℂ) |
| 227 | 189 | recnd 11289 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) ∈ ℂ) |
| 228 | 65, 111 | sselid 3981 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
| 229 | | 2fveq3 6911 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑀 → (𝐺‘(𝐾‘𝑖)) = (𝐺‘(𝐾‘𝑀))) |
| 230 | 229 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑀 → (𝐹‘(𝐺‘(𝐾‘𝑖))) = (𝐹‘(𝐺‘(𝐾‘𝑀)))) |
| 231 | 230 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑀 → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀))))) |
| 232 | 228, 215,
231 | fsumm1 15787 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) + (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))))) |
| 233 | 226, 227,
232 | comraddd 11475 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) + Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))))) |
| 234 | | 2fveq3 6911 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 1 → (𝐺‘(𝐾‘𝑖)) = (𝐺‘(𝐾‘1))) |
| 235 | 234 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 1 → (𝐹‘(𝐺‘(𝐾‘𝑖))) = (𝐹‘(𝐺‘(𝐾‘1)))) |
| 236 | 235 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 1 → (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (1st ‘(𝐹‘(𝐺‘(𝐾‘1))))) |
| 237 | 228, 220,
236 | fsum1p 15789 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = ((1st ‘(𝐹‘(𝐺‘(𝐾‘1)))) + Σ𝑖 ∈ ((1 + 1)...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))))) |
| 238 | 5, 6, 7, 8 | algr0 16609 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐾‘1) = 𝐶) |
| 239 | 238 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘(𝐾‘1)) = (𝐺‘𝐶)) |
| 240 | 239 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘(𝐺‘(𝐾‘1))) = (𝐹‘(𝐺‘𝐶))) |
| 241 | 240 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1st
‘(𝐹‘(𝐺‘(𝐾‘1)))) = (1st ‘(𝐹‘(𝐺‘𝐶)))) |
| 242 | 7 | peano2zd 12725 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1 + 1) ∈
ℤ) |
| 243 | 184 | nnzd 12640 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 244 | | 1z 12647 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℤ |
| 245 | | fzp1ss 13615 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
ℤ → ((1 + 1)...𝑀) ⊆ (1...𝑀)) |
| 246 | 244, 245 | mp1i 13 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((1 + 1)...𝑀) ⊆ (1...𝑀)) |
| 247 | 246 | sselda 3983 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ ((1 + 1)...𝑀)) → 𝑖 ∈ (1...𝑀)) |
| 248 | 247, 220 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ((1 + 1)...𝑀)) → (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℂ) |
| 249 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑗 + 1) → (𝐺‘(𝐾‘𝑖)) = (𝐺‘(𝐾‘(𝑗 + 1)))) |
| 250 | 249 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 + 1) → (𝐹‘(𝐺‘(𝐾‘𝑖))) = (𝐹‘(𝐺‘(𝐾‘(𝑗 + 1))))) |
| 251 | 250 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝑗 + 1) → (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = (1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑗 + 1)))))) |
| 252 | 7, 242, 243, 248, 251 | fsumshftm 15817 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Σ𝑖 ∈ ((1 + 1)...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = Σ𝑗 ∈ (((1 + 1) − 1)...(𝑀 − 1))(1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑗 + 1)))))) |
| 253 | | ax-1cn 11213 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℂ |
| 254 | 253, 253 | pncan3oi 11524 |
. . . . . . . . . . . . . . . . 17
⊢ ((1 + 1)
− 1) = 1 |
| 255 | 254 | oveq1i 7441 |
. . . . . . . . . . . . . . . 16
⊢ (((1 + 1)
− 1)...(𝑀 − 1))
= (1...(𝑀 −
1)) |
| 256 | 255 | sumeq1i 15733 |
. . . . . . . . . . . . . . 15
⊢
Σ𝑗 ∈ (((1
+ 1) − 1)...(𝑀
− 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑗 + 1))))) = Σ𝑗 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑗 + 1))))) |
| 257 | | fvoveq1 7454 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑖 → (𝐾‘(𝑗 + 1)) = (𝐾‘(𝑖 + 1))) |
| 258 | 257 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑖 → (𝐺‘(𝐾‘(𝑗 + 1))) = (𝐺‘(𝐾‘(𝑖 + 1)))) |
| 259 | 258 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑖 → (𝐹‘(𝐺‘(𝐾‘(𝑗 + 1)))) = (𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) |
| 260 | 259 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑖 → (1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑗 + 1))))) = (1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))) |
| 261 | 260 | cbvsumv 15732 |
. . . . . . . . . . . . . . 15
⊢
Σ𝑗 ∈
(1...(𝑀 −
1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑗 + 1))))) = Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) |
| 262 | 256, 261 | eqtri 2765 |
. . . . . . . . . . . . . 14
⊢
Σ𝑗 ∈ (((1
+ 1) − 1)...(𝑀
− 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑗 + 1))))) = Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) |
| 263 | 252, 262 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Σ𝑖 ∈ ((1 + 1)...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))) |
| 264 | 241, 263 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((1st
‘(𝐹‘(𝐺‘(𝐾‘1)))) + Σ𝑖 ∈ ((1 + 1)...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) = ((1st ‘(𝐹‘(𝐺‘𝐶))) + Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))))) |
| 265 | 237, 264 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) = ((1st ‘(𝐹‘(𝐺‘𝐶))) + Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))))) |
| 266 | 233, 265 | oveq12d 7449 |
. . . . . . . . . 10
⊢ (𝜑 → (Σ𝑖 ∈ (1...𝑀)(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...𝑀)(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) = (((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) + Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) − ((1st ‘(𝐹‘(𝐺‘𝐶))) + Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
| 267 | 194 | recnd 11289 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘(𝐹‘(𝐺‘𝐶))) ∈ ℂ) |
| 268 | | peano2nn 12278 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ℕ → (𝑖 + 1) ∈
ℕ) |
| 269 | | ffvelcdm 7101 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾:ℕ⟶𝑈 ∧ (𝑖 + 1) ∈ ℕ) → (𝐾‘(𝑖 + 1)) ∈ 𝑈) |
| 270 | 14, 268, 269 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐾‘(𝑖 + 1)) ∈ 𝑈) |
| 271 | 208, 270 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐺‘(𝐾‘(𝑖 + 1))) ∈ ℕ) |
| 272 | 207, 271 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))) ∈ (ℝ ×
ℝ)) |
| 273 | | xp1st 8046 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))) ∈ (ℝ × ℝ)
→ (1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ∈ ℝ) |
| 274 | 272, 273 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ∈ ℝ) |
| 275 | 223, 274 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ∈ ℝ) |
| 276 | 222, 275 | fsumrecl 15770 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ∈ ℝ) |
| 277 | 276 | recnd 11289 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ∈ ℂ) |
| 278 | 227, 226,
267, 277 | addsub4d 11667 |
. . . . . . . . . 10
⊢ (𝜑 → (((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) + Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) − ((1st ‘(𝐹‘(𝐺‘𝐶))) + Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))))) = (((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) + (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
| 279 | 221, 266,
278 | 3eqtrd 2781 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) = (((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) + (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
| 280 | 199, 206,
279 | 3eqtrd 2781 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))(((abs ∘ − ) ∘ 𝐹)‘𝑗) = (((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) + (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
| 281 | 280, 179 | eqeltrrd 2842 |
. . . . . . 7
⊢ (𝜑 → (((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) + (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))))) ∈ ℝ) |
| 282 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑀 → (𝐾‘𝑛) = (𝐾‘𝑀)) |
| 283 | 282 | eleq2d 2827 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑀 → (𝐵 ∈ (𝐾‘𝑛) ↔ 𝐵 ∈ (𝐾‘𝑀))) |
| 284 | 283, 61 | elrab2 3695 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ 𝑊 ↔ (𝑀 ∈ ℕ ∧ 𝐵 ∈ (𝐾‘𝑀))) |
| 285 | 111, 284 | sylib 218 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝐵 ∈ (𝐾‘𝑀))) |
| 286 | 285 | simprd 495 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ (𝐾‘𝑀)) |
| 287 | 87, 88, 89, 90, 91, 67, 92, 4, 93 | ovolicc2lem1 25552 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐾‘𝑀) ∈ 𝑈) → (𝐵 ∈ (𝐾‘𝑀) ↔ (𝐵 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) < 𝐵 ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀))))))) |
| 288 | 185, 287 | mpdan 687 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 ∈ (𝐾‘𝑀) ↔ (𝐵 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) < 𝐵 ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀))))))) |
| 289 | 286, 288 | mpbid 232 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) < 𝐵 ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))))) |
| 290 | 289 | simp3d 1145 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀))))) |
| 291 | 87, 88, 89, 90, 91, 67, 92, 4, 93 | ovolicc2lem1 25552 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ∈ 𝑈) → (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘𝐶))) < 𝐴 ∧ 𝐴 < (2nd ‘(𝐹‘(𝐺‘𝐶)))))) |
| 292 | 190, 291 | mpdan 687 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘𝐶))) < 𝐴 ∧ 𝐴 < (2nd ‘(𝐹‘(𝐺‘𝐶)))))) |
| 293 | 95, 292 | mpbid 232 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘𝐶))) < 𝐴 ∧ 𝐴 < (2nd ‘(𝐹‘(𝐺‘𝐶))))) |
| 294 | 293 | simp2d 1144 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘(𝐹‘(𝐺‘𝐶))) < 𝐴) |
| 295 | 88, 194, 189, 87, 290, 294 | lt2subd 11887 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 − 𝐴) < ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶))))) |
| 296 | 149, 195,
295 | ltled 11409 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − 𝐴) ≤ ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶))))) |
| 297 | 223 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℕ) |
| 298 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (1...(𝑀 − 1))) |
| 299 | 243 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℤ) |
| 300 | | elfzm11 13635 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1
∈ ℤ ∧ 𝑀
∈ ℤ) → (𝑖
∈ (1...(𝑀 − 1))
↔ (𝑖 ∈ ℤ
∧ 1 ≤ 𝑖 ∧ 𝑖 < 𝑀))) |
| 301 | 244, 299,
300 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ (1...(𝑀 − 1)) ↔ (𝑖 ∈ ℤ ∧ 1 ≤ 𝑖 ∧ 𝑖 < 𝑀))) |
| 302 | 298, 301 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ ℤ ∧ 1 ≤ 𝑖 ∧ 𝑖 < 𝑀)) |
| 303 | 302 | simp3d 1145 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 < 𝑀) |
| 304 | 297 | nnred 12281 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℝ) |
| 305 | 112 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℝ) |
| 306 | 304, 305 | ltnled 11408 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑖)) |
| 307 | 303, 306 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → ¬ 𝑀 ≤ 𝑖) |
| 308 | | infssuzle 12973 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑊 ⊆
(ℤ≥‘1) ∧ 𝑖 ∈ 𝑊) → inf(𝑊, ℝ, < ) ≤ 𝑖) |
| 309 | 65, 308 | mpan 690 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ 𝑊 → inf(𝑊, ℝ, < ) ≤ 𝑖) |
| 310 | 64, 309 | eqbrtrid 5178 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ 𝑊 → 𝑀 ≤ 𝑖) |
| 311 | 307, 310 | nsyl 140 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → ¬ 𝑖 ∈ 𝑊) |
| 312 | 297, 311 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ ℕ ∧ ¬ 𝑖 ∈ 𝑊)) |
| 313 | 87, 88, 89, 90, 91, 67, 92, 4, 93, 11, 9, 94, 95, 8, 6, 61 | ovolicc2lem2 25553 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ¬ 𝑖 ∈ 𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ≤ 𝐵) |
| 314 | 312, 313 | syldan 591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ≤ 𝐵) |
| 315 | 314 | iftrued 4533 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → if((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))), 𝐵) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) |
| 316 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = (𝐾‘𝑖) → (𝐹‘(𝐺‘𝑡)) = (𝐹‘(𝐺‘(𝐾‘𝑖)))) |
| 317 | 316 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = (𝐾‘𝑖) → (2nd ‘(𝐹‘(𝐺‘𝑡))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) |
| 318 | 317 | breq1d 5153 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (𝐾‘𝑖) → ((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵 ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ≤ 𝐵)) |
| 319 | 318, 317 | ifbieq1d 4550 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (𝐾‘𝑖) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) = if((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))), 𝐵)) |
| 320 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (𝐾‘𝑖) → (𝐻‘𝑡) = (𝐻‘(𝐾‘𝑖))) |
| 321 | 319, 320 | eleq12d 2835 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (𝐾‘𝑖) → (if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡) ↔ if((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))), 𝐵) ∈ (𝐻‘(𝐾‘𝑖)))) |
| 322 | 94 | ralrimiva 3146 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) |
| 323 | 322 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → ∀𝑡 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) |
| 324 | | ffvelcdm 7101 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾:ℕ⟶𝑇 ∧ 𝑖 ∈ ℕ) → (𝐾‘𝑖) ∈ 𝑇) |
| 325 | 10, 223, 324 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝐾‘𝑖) ∈ 𝑇) |
| 326 | 321, 323,
325 | rspcdva 3623 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → if((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))), 𝐵) ∈ (𝐻‘(𝐾‘𝑖))) |
| 327 | 315, 326 | eqeltrrd 2842 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ (𝐻‘(𝐾‘𝑖))) |
| 328 | 5, 6, 7, 8, 9 | algrp1 16611 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐾‘(𝑖 + 1)) = (𝐻‘(𝐾‘𝑖))) |
| 329 | 223, 328 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝐾‘(𝑖 + 1)) = (𝐻‘(𝐾‘𝑖))) |
| 330 | 327, 329 | eleqtrrd 2844 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ (𝐾‘(𝑖 + 1))) |
| 331 | 223, 270 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (𝐾‘(𝑖 + 1)) ∈ 𝑈) |
| 332 | 87, 88, 89, 90, 91, 67, 92, 4, 93 | ovolicc2lem1 25552 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐾‘(𝑖 + 1)) ∈ 𝑈) → ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ (𝐾‘(𝑖 + 1)) ↔ ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∧ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
| 333 | 331, 332 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → ((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ (𝐾‘(𝑖 + 1)) ↔ ((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∧ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
| 334 | 330, 333 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → ((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) ∧ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))))) |
| 335 | 334 | simp2d 1144 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) |
| 336 | 275, 224,
335 | ltled 11409 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑀 − 1))) → (1st
‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ≤ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) |
| 337 | 222, 275,
224, 336 | fsumle 15835 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ≤ Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖))))) |
| 338 | 225, 276 | subge0d 11853 |
. . . . . . . . 9
⊢ (𝜑 → (0 ≤ (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))) ↔ Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))) ≤ Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))))) |
| 339 | 337, 338 | mpbird 257 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))))) |
| 340 | 225, 276 | resubcld 11691 |
. . . . . . . . 9
⊢ (𝜑 → (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))) ∈ ℝ) |
| 341 | 195, 340 | addge01d 11851 |
. . . . . . . 8
⊢ (𝜑 → (0 ≤ (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))) ↔ ((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) ≤ (((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) + (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1))))))))) |
| 342 | 339, 341 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → ((2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) ≤ (((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) + (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
| 343 | 149, 195,
281, 296, 342 | letrd 11418 |
. . . . . 6
⊢ (𝜑 → (𝐵 − 𝐴) ≤ (((2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑀)))) − (1st ‘(𝐹‘(𝐺‘𝐶)))) + (Σ𝑖 ∈ (1...(𝑀 − 1))(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑖)))) − Σ𝑖 ∈ (1...(𝑀 − 1))(1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑖 + 1)))))))) |
| 344 | 343, 280 | breqtrrd 5171 |
. . . . 5
⊢ (𝜑 → (𝐵 − 𝐴) ≤ Σ𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))(((abs ∘ − ) ∘ 𝐹)‘𝑗)) |
| 345 | 344 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (𝐵 − 𝐴) ≤ Σ𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))(((abs ∘ − ) ∘ 𝐹)‘𝑗)) |
| 346 | | fzfid 14014 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (1...𝑧) ∈ Fin) |
| 347 | 161 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) ∧ 𝑗 ∈ (1...𝑧)) → (((abs ∘ − ) ∘
𝐹)‘𝑗) ∈ ℝ) |
| 348 | 160 | simprd 495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑧)) → 0 ≤ (((abs ∘ − )
∘ 𝐹)‘𝑗)) |
| 349 | 348 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) ∧ 𝑗 ∈ (1...𝑧)) → 0 ≤ (((abs ∘ − )
∘ 𝐹)‘𝑗)) |
| 350 | 21 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ) → ((𝐺 ∘ 𝐾) “ (1...𝑀)) ⊆ ℕ) |
| 351 | 350 | sselda 3983 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑦 ∈ ℕ) |
| 352 | 351 | nnred 12281 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑦 ∈ ℝ) |
| 353 | 28 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑧 ∈ ℝ) |
| 354 | | ltle 11349 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧 → 𝑦 ≤ 𝑧)) |
| 355 | 352, 353,
354 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → (𝑦 < 𝑧 → 𝑦 ≤ 𝑧)) |
| 356 | 351, 5 | eleqtrdi 2851 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑦 ∈
(ℤ≥‘1)) |
| 357 | | nnz 12634 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℤ) |
| 358 | 357 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → 𝑧 ∈ ℤ) |
| 359 | | elfz5 13556 |
. . . . . . . . . 10
⊢ ((𝑦 ∈
(ℤ≥‘1) ∧ 𝑧 ∈ ℤ) → (𝑦 ∈ (1...𝑧) ↔ 𝑦 ≤ 𝑧)) |
| 360 | 356, 358,
359 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → (𝑦 ∈ (1...𝑧) ↔ 𝑦 ≤ 𝑧)) |
| 361 | 355, 360 | sylibrd 259 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ) ∧ 𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))) → (𝑦 < 𝑧 → 𝑦 ∈ (1...𝑧))) |
| 362 | 361 | ralimdva 3167 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ) → (∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧 → ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ∈ (1...𝑧))) |
| 363 | 362 | impr 454 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ∈ (1...𝑧)) |
| 364 | | dfss3 3972 |
. . . . . 6
⊢ (((𝐺 ∘ 𝐾) “ (1...𝑀)) ⊆ (1...𝑧) ↔ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 ∈ (1...𝑧)) |
| 365 | 363, 364 | sylibr 234 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → ((𝐺 ∘ 𝐾) “ (1...𝑀)) ⊆ (1...𝑧)) |
| 366 | 346, 347,
349, 365 | fsumless 15832 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → Σ𝑗 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))(((abs ∘ − ) ∘ 𝐹)‘𝑗) ≤ Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗)) |
| 367 | 175, 180,
163, 345, 366 | letrd 11418 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (𝐵 − 𝐴) ≤ Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗)) |
| 368 | | eqidd 2738 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) ∧ 𝑗 ∈ (1...𝑧)) → (((abs ∘ − ) ∘
𝐹)‘𝑗) = (((abs ∘ − ) ∘ 𝐹)‘𝑗)) |
| 369 | | simprl 771 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → 𝑧 ∈ ℕ) |
| 370 | 369, 5 | eleqtrdi 2851 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → 𝑧 ∈
(ℤ≥‘1)) |
| 371 | 347 | recnd 11289 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) ∧ 𝑗 ∈ (1...𝑧)) → (((abs ∘ − ) ∘
𝐹)‘𝑗) ∈ ℂ) |
| 372 | 368, 370,
371 | fsumser 15766 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑧)) |
| 373 | 90 | fveq1i 6907 |
. . . . 5
⊢ (𝑆‘𝑧) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑧) |
| 374 | 372, 373 | eqtr4di 2795 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗) = (𝑆‘𝑧)) |
| 375 | 166 | ffnd 6737 |
. . . . . 6
⊢ (𝜑 → 𝑆 Fn ℕ) |
| 376 | | fnfvelrn 7100 |
. . . . . 6
⊢ ((𝑆 Fn ℕ ∧ 𝑧 ∈ ℕ) → (𝑆‘𝑧) ∈ ran 𝑆) |
| 377 | 375, 369,
376 | syl2an2r 685 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (𝑆‘𝑧) ∈ ran 𝑆) |
| 378 | | supxrub 13366 |
. . . . 5
⊢ ((ran
𝑆 ⊆
ℝ* ∧ (𝑆‘𝑧) ∈ ran 𝑆) → (𝑆‘𝑧) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 379 | 171, 377,
378 | syl2an2r 685 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (𝑆‘𝑧) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 380 | 374, 379 | eqbrtrd 5165 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → Σ𝑗 ∈ (1...𝑧)(((abs ∘ − ) ∘ 𝐹)‘𝑗) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 381 | 151, 164,
174, 367, 380 | xrletrd 13204 |
. 2
⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ ∀𝑦 ∈ ((𝐺 ∘ 𝐾) “ (1...𝑀))𝑦 < 𝑧)) → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 382 | 148, 381 | rexlimddv 3161 |
1
⊢ (𝜑 → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, <
)) |