![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abelth2 | Structured version Visualization version GIF version |
Description: Abel's theorem, restricted to the [0, 1] interval. (Contributed by Mario Carneiro, 2-Apr-2015.) |
Ref | Expression |
---|---|
abelth2.1 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
abelth2.2 | ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) |
abelth2.3 | ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) |
Ref | Expression |
---|---|
abelth2 | ⊢ (𝜑 → 𝐹 ∈ ((0[,]1)–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitssre 13559 | . . . . . . 7 ⊢ (0[,]1) ⊆ ℝ | |
2 | ax-resscn 11241 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 4018 | . . . . . 6 ⊢ (0[,]1) ⊆ ℂ |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → (0[,]1) ⊆ ℂ) |
5 | 1re 11290 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
6 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → 𝑧 ∈ (0[,]1)) | |
7 | elicc01 13526 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0[,]1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ∧ 𝑧 ≤ 1)) | |
8 | 6, 7 | sylib 218 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ∧ 𝑧 ≤ 1)) |
9 | 8 | simp1d 1142 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → 𝑧 ∈ ℝ) |
10 | resubcl 11600 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 − 𝑧) ∈ ℝ) | |
11 | 5, 9, 10 | sylancr 586 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → (1 − 𝑧) ∈ ℝ) |
12 | 11 | leidd 11856 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → (1 − 𝑧) ≤ (1 − 𝑧)) |
13 | 1red 11291 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → 1 ∈ ℝ) | |
14 | 8 | simp3d 1144 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → 𝑧 ≤ 1) |
15 | 9, 13, 14 | abssubge0d 15480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → (abs‘(1 − 𝑧)) = (1 − 𝑧)) |
16 | 8 | simp2d 1143 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → 0 ≤ 𝑧) |
17 | 9, 16 | absidd 15471 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → (abs‘𝑧) = 𝑧) |
18 | 17 | oveq2d 7464 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → (1 − (abs‘𝑧)) = (1 − 𝑧)) |
19 | 18 | oveq2d 7464 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → (1 · (1 − (abs‘𝑧))) = (1 · (1 − 𝑧))) |
20 | 11 | recnd 11318 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → (1 − 𝑧) ∈ ℂ) |
21 | 20 | mullidd 11308 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → (1 · (1 − 𝑧)) = (1 − 𝑧)) |
22 | 19, 21 | eqtrd 2780 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → (1 · (1 − (abs‘𝑧))) = (1 − 𝑧)) |
23 | 12, 15, 22 | 3brtr4d 5198 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ (0[,]1)) → (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))) |
24 | 4, 23 | ssrabdv 4097 | . . . 4 ⊢ (𝜑 → (0[,]1) ⊆ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))}) |
25 | 24 | resmptd 6069 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
26 | abelth2.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) | |
27 | 25, 26 | eqtr4di 2798 | . 2 ⊢ (𝜑 → ((𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ↾ (0[,]1)) = 𝐹) |
28 | abelth2.1 | . . . 4 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
29 | abelth2.2 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) | |
30 | 1red 11291 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
31 | 0le1 11813 | . . . . 5 ⊢ 0 ≤ 1 | |
32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ≤ 1) |
33 | eqid 2740 | . . . 4 ⊢ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} | |
34 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) = (𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) | |
35 | 28, 29, 30, 32, 33, 34 | abelth 26503 | . . 3 ⊢ (𝜑 → (𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ∈ ({𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))}–cn→ℂ)) |
36 | rescncf 24942 | . . 3 ⊢ ((0[,]1) ⊆ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} → ((𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ∈ ({𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))}–cn→ℂ) → ((𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))) | |
37 | 24, 35, 36 | sylc 65 | . 2 ⊢ (𝜑 → ((𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
38 | 27, 37 | eqeltrrd 2845 | 1 ⊢ (𝜑 → 𝐹 ∈ ((0[,]1)–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ↾ cres 5702 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ≤ cle 11325 − cmin 11520 ℕ0cn0 12553 [,]cicc 13410 seqcseq 14052 ↑cexp 14112 abscabs 15283 ⇝ cli 15530 Σcsu 15734 –cn→ccncf 24921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cn 23256 df-cnp 23257 df-t1 23343 df-haus 23344 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-ulm 26438 |
This theorem is referenced by: leibpi 27003 |
Copyright terms: Public domain | W3C validator |