Step | Hyp | Ref
| Expression |
1 | | unitssre 13480 |
. . . . . . 7
β’ (0[,]1)
β β |
2 | | ax-resscn 11169 |
. . . . . . 7
β’ β
β β |
3 | 1, 2 | sstri 3991 |
. . . . . 6
β’ (0[,]1)
β β |
4 | 3 | a1i 11 |
. . . . 5
β’ (π β (0[,]1) β
β) |
5 | | 1re 11218 |
. . . . . . . 8
β’ 1 β
β |
6 | | simpr 485 |
. . . . . . . . . 10
β’ ((π β§ π§ β (0[,]1)) β π§ β (0[,]1)) |
7 | | elicc01 13447 |
. . . . . . . . . 10
β’ (π§ β (0[,]1) β (π§ β β β§ 0 β€
π§ β§ π§ β€ 1)) |
8 | 6, 7 | sylib 217 |
. . . . . . . . 9
β’ ((π β§ π§ β (0[,]1)) β (π§ β β β§ 0 β€ π§ β§ π§ β€ 1)) |
9 | 8 | simp1d 1142 |
. . . . . . . 8
β’ ((π β§ π§ β (0[,]1)) β π§ β β) |
10 | | resubcl 11528 |
. . . . . . . 8
β’ ((1
β β β§ π§
β β) β (1 β π§) β β) |
11 | 5, 9, 10 | sylancr 587 |
. . . . . . 7
β’ ((π β§ π§ β (0[,]1)) β (1 β π§) β
β) |
12 | 11 | leidd 11784 |
. . . . . 6
β’ ((π β§ π§ β (0[,]1)) β (1 β π§) β€ (1 β π§)) |
13 | | 1red 11219 |
. . . . . . 7
β’ ((π β§ π§ β (0[,]1)) β 1 β
β) |
14 | 8 | simp3d 1144 |
. . . . . . 7
β’ ((π β§ π§ β (0[,]1)) β π§ β€ 1) |
15 | 9, 13, 14 | abssubge0d 15382 |
. . . . . 6
β’ ((π β§ π§ β (0[,]1)) β (absβ(1 β
π§)) = (1 β π§)) |
16 | 8 | simp2d 1143 |
. . . . . . . . . 10
β’ ((π β§ π§ β (0[,]1)) β 0 β€ π§) |
17 | 9, 16 | absidd 15373 |
. . . . . . . . 9
β’ ((π β§ π§ β (0[,]1)) β (absβπ§) = π§) |
18 | 17 | oveq2d 7427 |
. . . . . . . 8
β’ ((π β§ π§ β (0[,]1)) β (1 β
(absβπ§)) = (1 β
π§)) |
19 | 18 | oveq2d 7427 |
. . . . . . 7
β’ ((π β§ π§ β (0[,]1)) β (1 Β· (1
β (absβπ§))) =
(1 Β· (1 β π§))) |
20 | 11 | recnd 11246 |
. . . . . . . 8
β’ ((π β§ π§ β (0[,]1)) β (1 β π§) β
β) |
21 | 20 | mullidd 11236 |
. . . . . . 7
β’ ((π β§ π§ β (0[,]1)) β (1 Β· (1
β π§)) = (1 β
π§)) |
22 | 19, 21 | eqtrd 2772 |
. . . . . 6
β’ ((π β§ π§ β (0[,]1)) β (1 Β· (1
β (absβπ§))) =
(1 β π§)) |
23 | 12, 15, 22 | 3brtr4d 5180 |
. . . . 5
β’ ((π β§ π§ β (0[,]1)) β (absβ(1 β
π§)) β€ (1 Β· (1
β (absβπ§)))) |
24 | 4, 23 | ssrabdv 4071 |
. . . 4
β’ (π β (0[,]1) β {π§ β β β£
(absβ(1 β π§))
β€ (1 Β· (1 β (absβπ§)))}) |
25 | 24 | resmptd 6040 |
. . 3
β’ (π β ((π₯ β {π§ β β β£ (absβ(1 β
π§)) β€ (1 Β· (1
β (absβπ§)))}
β¦ Ξ£π β
β0 ((π΄βπ) Β· (π₯βπ))) βΎ (0[,]1)) = (π₯ β (0[,]1) β¦ Ξ£π β β0
((π΄βπ) Β· (π₯βπ)))) |
26 | | abelth2.3 |
. . 3
β’ πΉ = (π₯ β (0[,]1) β¦ Ξ£π β β0
((π΄βπ) Β· (π₯βπ))) |
27 | 25, 26 | eqtr4di 2790 |
. 2
β’ (π β ((π₯ β {π§ β β β£ (absβ(1 β
π§)) β€ (1 Β· (1
β (absβπ§)))}
β¦ Ξ£π β
β0 ((π΄βπ) Β· (π₯βπ))) βΎ (0[,]1)) = πΉ) |
28 | | abelth2.1 |
. . . 4
β’ (π β π΄:β0βΆβ) |
29 | | abelth2.2 |
. . . 4
β’ (π β seq0( + , π΄) β dom β
) |
30 | | 1red 11219 |
. . . 4
β’ (π β 1 β
β) |
31 | | 0le1 11741 |
. . . . 5
β’ 0 β€
1 |
32 | 31 | a1i 11 |
. . . 4
β’ (π β 0 β€ 1) |
33 | | eqid 2732 |
. . . 4
β’ {π§ β β β£
(absβ(1 β π§))
β€ (1 Β· (1 β (absβπ§)))} = {π§ β β β£ (absβ(1 β
π§)) β€ (1 Β· (1
β (absβπ§)))} |
34 | | eqid 2732 |
. . . 4
β’ (π₯ β {π§ β β β£ (absβ(1 β
π§)) β€ (1 Β· (1
β (absβπ§)))}
β¦ Ξ£π β
β0 ((π΄βπ) Β· (π₯βπ))) = (π₯ β {π§ β β β£ (absβ(1 β
π§)) β€ (1 Β· (1
β (absβπ§)))}
β¦ Ξ£π β
β0 ((π΄βπ) Β· (π₯βπ))) |
35 | 28, 29, 30, 32, 33, 34 | abelth 26177 |
. . 3
β’ (π β (π₯ β {π§ β β β£ (absβ(1 β
π§)) β€ (1 Β· (1
β (absβπ§)))}
β¦ Ξ£π β
β0 ((π΄βπ) Β· (π₯βπ))) β ({π§ β β β£ (absβ(1 β
π§)) β€ (1 Β· (1
β (absβπ§)))}βcnββ)) |
36 | | rescncf 24637 |
. . 3
β’ ((0[,]1)
β {π§ β β
β£ (absβ(1 β π§)) β€ (1 Β· (1 β
(absβπ§)))} β
((π₯ β {π§ β β β£
(absβ(1 β π§))
β€ (1 Β· (1 β (absβπ§)))} β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) β ({π§ β β β£ (absβ(1 β
π§)) β€ (1 Β· (1
β (absβπ§)))}βcnββ) β ((π₯ β {π§ β β β£ (absβ(1 β
π§)) β€ (1 Β· (1
β (absβπ§)))}
β¦ Ξ£π β
β0 ((π΄βπ) Β· (π₯βπ))) βΎ (0[,]1)) β
((0[,]1)βcnββ))) |
37 | 24, 35, 36 | sylc 65 |
. 2
β’ (π β ((π₯ β {π§ β β β£ (absβ(1 β
π§)) β€ (1 Β· (1
β (absβπ§)))}
β¦ Ξ£π β
β0 ((π΄βπ) Β· (π₯βπ))) βΎ (0[,]1)) β
((0[,]1)βcnββ)) |
38 | 27, 37 | eqeltrrd 2834 |
1
β’ (π β πΉ β ((0[,]1)βcnββ)) |