Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabssdv | Structured version Visualization version GIF version |
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.) |
Ref | Expression |
---|---|
rabssdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
rabssdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssdv.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ∈ 𝐵) | |
2 | 1 | 3exp 1121 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝑥 ∈ 𝐵))) |
3 | 2 | ralrimiv 3104 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 ∈ 𝐵)) |
4 | rabss 3985 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 ∈ 𝐵)) | |
5 | 3, 4 | sylibr 237 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 ∈ wcel 2110 ∀wral 3061 {crab 3065 ⊆ wss 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rab 3070 df-v 3410 df-in 3873 df-ss 3883 |
This theorem is referenced by: suppss2 7942 oemapvali 9299 cantnflem1 9304 harval2 9613 zsupss 12533 ramub1lem1 16579 symggen 18862 efgsfo 19129 ablfacrp 19453 ablfac1eu 19460 pgpfac1lem5 19466 ablfaclem3 19474 nrmr0reg 22646 ptcmplem3 22951 abelthlem2 25324 lgamgulmlem1 25911 rspectopn 31531 neibastop2lem 34286 topmeet 34290 cntotbnd 35691 mapdrvallem2 39396 k0004ss1 41438 liminfvalxr 42999 |
Copyright terms: Public domain | W3C validator |