![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabssdv | Structured version Visualization version GIF version |
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.) |
Ref | Expression |
---|---|
rabssdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
rabssdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssdv.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ∈ 𝐵) | |
2 | 1 | 3exp 1119 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝑥 ∈ 𝐵))) |
3 | 2 | ralrimiv 3151 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 ∈ 𝐵)) |
4 | rabss 4095 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 ∈ 𝐵)) | |
5 | 3, 4 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 {crab 3443 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rab 3444 df-ss 3993 |
This theorem is referenced by: suppss2 8241 oemapvali 9753 cantnflem1 9758 harval2 10066 zsupss 13002 ramub1lem1 17073 symggen 19512 efgsfo 19781 ablfacrp 20110 ablfac1eu 20117 pgpfac1lem5 20123 ablfaclem3 20131 nrmr0reg 23778 ptcmplem3 24083 abelthlem2 26494 lgamgulmlem1 27090 sltonold 28301 rspectopn 33813 neibastop2lem 36326 topmeet 36330 weiunse 36434 cntotbnd 37756 mapdrvallem2 41602 aks6d1c6lem3 42129 onintunirab 43188 nadd2rabex 43348 k0004ss1 44113 liminfvalxr 45704 |
Copyright terms: Public domain | W3C validator |