| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabssdv | Structured version Visualization version GIF version | ||
| Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| rabssdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rabssdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssdv.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ∈ 𝐵) | |
| 2 | 1 | 3exp 1119 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝑥 ∈ 𝐵))) |
| 3 | 2 | ralrimiv 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 ∈ 𝐵)) |
| 4 | rabss 4035 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 ∈ 𝐵)) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 {crab 3405 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3406 df-ss 3931 |
| This theorem is referenced by: suppss2 8179 oemapvali 9637 cantnflem1 9642 harval2 9950 zsupss 12896 ramub1lem1 16997 symggen 19400 efgsfo 19669 ablfacrp 19998 ablfac1eu 20005 pgpfac1lem5 20011 ablfaclem3 20019 nrmr0reg 23636 ptcmplem3 23941 abelthlem2 26342 lgamgulmlem1 26939 sltonold 28162 onsfi 28247 rspectopn 33857 neibastop2lem 36348 topmeet 36352 weiunse 36456 cntotbnd 37790 mapdrvallem2 41639 aks6d1c6lem3 42160 onintunirab 43216 nadd2rabex 43375 k0004ss1 44140 liminfvalxr 45781 |
| Copyright terms: Public domain | W3C validator |