MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabssdv Structured version   Visualization version   GIF version

Theorem rabssdv 4034
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
rabssdv.1 ((𝜑𝑥𝐴𝜓) → 𝑥𝐵)
Assertion
Ref Expression
rabssdv (𝜑 → {𝑥𝐴𝜓} ⊆ 𝐵)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rabssdv
StepHypRef Expression
1 rabssdv.1 . . . 4 ((𝜑𝑥𝐴𝜓) → 𝑥𝐵)
213exp 1119 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝑥𝐵)))
32ralrimiv 3124 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝑥𝐵))
4 rabss 4031 . 2 ({𝑥𝐴𝜓} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜓𝑥𝐵))
53, 4sylibr 234 1 (𝜑 → {𝑥𝐴𝜓} ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  wral 3044  {crab 3402  wss 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rab 3403  df-ss 3928
This theorem is referenced by:  suppss2  8156  oemapvali  9615  cantnflem1  9620  harval2  9928  zsupss  12874  ramub1lem1  16974  symggen  19385  efgsfo  19654  ablfacrp  19983  ablfac1eu  19990  pgpfac1lem5  19996  ablfaclem3  20004  nrmr0reg  23670  ptcmplem3  23975  abelthlem2  26376  lgamgulmlem1  26973  sltonold  28203  onsfi  28288  rspectopn  33851  neibastop2lem  36342  topmeet  36346  weiunse  36450  cntotbnd  37784  mapdrvallem2  41633  aks6d1c6lem3  42154  onintunirab  43210  nadd2rabex  43369  k0004ss1  44134  liminfvalxr  45775
  Copyright terms: Public domain W3C validator