Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabssdv | Structured version Visualization version GIF version |
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.) |
Ref | Expression |
---|---|
rabssdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
rabssdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssdv.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ∈ 𝐵) | |
2 | 1 | 3exp 1118 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝑥 ∈ 𝐵))) |
3 | 2 | ralrimiv 3138 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 ∈ 𝐵)) |
4 | rabss 4017 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 ∈ 𝐵)) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2105 ∀wral 3061 {crab 3403 ⊆ wss 3898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rab 3404 df-v 3443 df-in 3905 df-ss 3915 |
This theorem is referenced by: suppss2 8086 oemapvali 9541 cantnflem1 9546 harval2 9854 zsupss 12778 ramub1lem1 16824 symggen 19174 efgsfo 19440 ablfacrp 19764 ablfac1eu 19771 pgpfac1lem5 19777 ablfaclem3 19785 nrmr0reg 23006 ptcmplem3 23311 abelthlem2 25697 lgamgulmlem1 26284 rspectopn 32115 neibastop2lem 34645 topmeet 34649 cntotbnd 36067 mapdrvallem2 39921 k0004ss1 42090 liminfvalxr 43668 |
Copyright terms: Public domain | W3C validator |