| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabssdv | Structured version Visualization version GIF version | ||
| Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| rabssdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rabssdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssdv.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ∈ 𝐵) | |
| 2 | 1 | 3exp 1119 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝑥 ∈ 𝐵))) |
| 3 | 2 | ralrimiv 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 ∈ 𝐵)) |
| 4 | rabss 4031 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 ∈ 𝐵)) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 {crab 3402 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3403 df-ss 3928 |
| This theorem is referenced by: suppss2 8156 oemapvali 9613 cantnflem1 9618 harval2 9926 zsupss 12872 ramub1lem1 16973 symggen 19384 efgsfo 19653 ablfacrp 19982 ablfac1eu 19989 pgpfac1lem5 19995 ablfaclem3 20003 nrmr0reg 23669 ptcmplem3 23974 abelthlem2 26375 lgamgulmlem1 26972 sltonold 28202 onsfi 28287 rspectopn 33850 neibastop2lem 36341 topmeet 36345 weiunse 36449 cntotbnd 37783 mapdrvallem2 41632 aks6d1c6lem3 42153 onintunirab 43209 nadd2rabex 43368 k0004ss1 44133 liminfvalxr 45774 |
| Copyright terms: Public domain | W3C validator |