| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabssdv | Structured version Visualization version GIF version | ||
| Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| rabssdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rabssdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssdv.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ∈ 𝐵) | |
| 2 | 1 | 3exp 1119 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝑥 ∈ 𝐵))) |
| 3 | 2 | ralrimiv 3120 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 ∈ 𝐵)) |
| 4 | rabss 4023 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 ∈ 𝐵)) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 {crab 3394 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3395 df-ss 3920 |
| This theorem is referenced by: suppss2 8133 oemapvali 9580 cantnflem1 9585 harval2 9893 zsupss 12838 ramub1lem1 16938 symggen 19349 efgsfo 19618 ablfacrp 19947 ablfac1eu 19954 pgpfac1lem5 19960 ablfaclem3 19968 nrmr0reg 23634 ptcmplem3 23939 abelthlem2 26340 lgamgulmlem1 26937 sltonold 28169 onsfi 28254 rspectopn 33850 fineqvnttrclselem1 35090 neibastop2lem 36354 topmeet 36358 weiunse 36462 cntotbnd 37796 mapdrvallem2 41644 aks6d1c6lem3 42165 onintunirab 43220 nadd2rabex 43379 k0004ss1 44144 liminfvalxr 45784 |
| Copyright terms: Public domain | W3C validator |