MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabssdv Structured version   Visualization version   GIF version

Theorem rabssdv 4038
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
rabssdv.1 ((𝜑𝑥𝐴𝜓) → 𝑥𝐵)
Assertion
Ref Expression
rabssdv (𝜑 → {𝑥𝐴𝜓} ⊆ 𝐵)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rabssdv
StepHypRef Expression
1 rabssdv.1 . . . 4 ((𝜑𝑥𝐴𝜓) → 𝑥𝐵)
213exp 1119 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝑥𝐵)))
32ralrimiv 3124 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝑥𝐵))
4 rabss 4035 . 2 ({𝑥𝐴𝜓} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜓𝑥𝐵))
53, 4sylibr 234 1 (𝜑 → {𝑥𝐴𝜓} ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  wral 3044  {crab 3405  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rab 3406  df-ss 3931
This theorem is referenced by:  suppss2  8179  oemapvali  9637  cantnflem1  9642  harval2  9950  zsupss  12896  ramub1lem1  16997  symggen  19400  efgsfo  19669  ablfacrp  19998  ablfac1eu  20005  pgpfac1lem5  20011  ablfaclem3  20019  nrmr0reg  23636  ptcmplem3  23941  abelthlem2  26342  lgamgulmlem1  26939  sltonold  28162  onsfi  28247  rspectopn  33857  neibastop2lem  36348  topmeet  36352  weiunse  36456  cntotbnd  37790  mapdrvallem2  41639  aks6d1c6lem3  42160  onintunirab  43216  nadd2rabex  43375  k0004ss1  44140  liminfvalxr  45781
  Copyright terms: Public domain W3C validator