MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabssdv Structured version   Visualization version   GIF version

Theorem rabssdv 4020
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
rabssdv.1 ((𝜑𝑥𝐴𝜓) → 𝑥𝐵)
Assertion
Ref Expression
rabssdv (𝜑 → {𝑥𝐴𝜓} ⊆ 𝐵)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rabssdv
StepHypRef Expression
1 rabssdv.1 . . . 4 ((𝜑𝑥𝐴𝜓) → 𝑥𝐵)
213exp 1119 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝑥𝐵)))
32ralrimiv 3123 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝑥𝐵))
4 rabss 4017 . 2 ({𝑥𝐴𝜓} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜓𝑥𝐵))
53, 4sylibr 234 1 (𝜑 → {𝑥𝐴𝜓} ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2111  wral 3047  {crab 3395  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rab 3396  df-ss 3914
This theorem is referenced by:  suppss2  8130  oemapvali  9574  cantnflem1  9579  harval2  9890  zsupss  12835  ramub1lem1  16938  symggen  19382  efgsfo  19651  ablfacrp  19980  ablfac1eu  19987  pgpfac1lem5  19993  ablfaclem3  20001  nrmr0reg  23664  ptcmplem3  23969  abelthlem2  26369  lgamgulmlem1  26966  sltonold  28198  onsfi  28283  rspectopn  33880  fineqvnttrclselem1  35141  neibastop2lem  36404  topmeet  36408  weiunse  36512  cntotbnd  37835  mapdrvallem2  41743  aks6d1c6lem3  42264  onintunirab  43319  nadd2rabex  43478  k0004ss1  44243  liminfvalxr  45880
  Copyright terms: Public domain W3C validator