MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfv2 Structured version   Visualization version   GIF version

Theorem strfv2 17136
Description: A variation on strfv 17137 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
strfv2.s 𝑆 ∈ V
strfv2.f Fun ◑◑𝑆
strfv2.e 𝐸 = Slot (πΈβ€˜ndx)
strfv2.n ⟨(πΈβ€˜ndx), 𝐢⟩ ∈ 𝑆
Assertion
Ref Expression
strfv2 (𝐢 ∈ 𝑉 β†’ 𝐢 = (πΈβ€˜π‘†))

Proof of Theorem strfv2
StepHypRef Expression
1 strfv2.e . 2 𝐸 = Slot (πΈβ€˜ndx)
2 strfv2.s . . 3 𝑆 ∈ V
32a1i 11 . 2 (𝐢 ∈ 𝑉 β†’ 𝑆 ∈ V)
4 strfv2.f . . 3 Fun ◑◑𝑆
54a1i 11 . 2 (𝐢 ∈ 𝑉 β†’ Fun ◑◑𝑆)
6 strfv2.n . . 3 ⟨(πΈβ€˜ndx), 𝐢⟩ ∈ 𝑆
76a1i 11 . 2 (𝐢 ∈ 𝑉 β†’ ⟨(πΈβ€˜ndx), 𝐢⟩ ∈ 𝑆)
8 id 22 . 2 (𝐢 ∈ 𝑉 β†’ 𝐢 ∈ 𝑉)
91, 3, 5, 7, 8strfv2d 17135 1 (𝐢 ∈ 𝑉 β†’ 𝐢 = (πΈβ€˜π‘†))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  Vcvv 3475  βŸ¨cop 4635  β—‘ccnv 5676  Fun wfun 6538  β€˜cfv 6544  Slot cslot 17114  ndxcnx 17126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6496  df-fun 6546  df-fv 6552  df-slot 17115
This theorem is referenced by:  strfv  17137
  Copyright terms: Public domain W3C validator