| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfv2 | Structured version Visualization version GIF version | ||
| Description: A variation on strfv 17116 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| strfv2.s | ⊢ 𝑆 ∈ V |
| strfv2.f | ⊢ Fun ◡◡𝑆 |
| strfv2.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| strfv2.n | ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
| Ref | Expression |
|---|---|
| strfv2 | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv2.e | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | strfv2.s | . . 3 ⊢ 𝑆 ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝑆 ∈ V) |
| 4 | strfv2.f | . . 3 ⊢ Fun ◡◡𝑆 | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝐶 ∈ 𝑉 → Fun ◡◡𝑆) |
| 6 | strfv2.n | . . 3 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐶 ∈ 𝑉 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
| 8 | id 22 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ 𝑉) | |
| 9 | 1, 3, 5, 7, 8 | strfv2d 17114 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4581 ◡ccnv 5618 Fun wfun 6480 ‘cfv 6486 Slot cslot 17094 ndxcnx 17106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6442 df-fun 6488 df-fv 6494 df-slot 17095 |
| This theorem is referenced by: strfv 17116 |
| Copyright terms: Public domain | W3C validator |