MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfv2 Structured version   Visualization version   GIF version

Theorem strfv2 16807
Description: A variation on strfv 16808 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
strfv2.s 𝑆 ∈ V
strfv2.f Fun 𝑆
strfv2.e 𝐸 = Slot (𝐸‘ndx)
strfv2.n ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆
Assertion
Ref Expression
strfv2 (𝐶𝑉𝐶 = (𝐸𝑆))

Proof of Theorem strfv2
StepHypRef Expression
1 strfv2.e . 2 𝐸 = Slot (𝐸‘ndx)
2 strfv2.s . . 3 𝑆 ∈ V
32a1i 11 . 2 (𝐶𝑉𝑆 ∈ V)
4 strfv2.f . . 3 Fun 𝑆
54a1i 11 . 2 (𝐶𝑉 → Fun 𝑆)
6 strfv2.n . . 3 ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆
76a1i 11 . 2 (𝐶𝑉 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
8 id 22 . 2 (𝐶𝑉𝐶𝑉)
91, 3, 5, 7, 8strfv2d 16806 1 (𝐶𝑉𝐶 = (𝐸𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  Vcvv 3423  cop 4564  ccnv 5578  Fun wfun 6409  cfv 6415  Slot cslot 16785  ndxcnx 16797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5479  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-res 5591  df-iota 6373  df-fun 6417  df-fv 6423  df-slot 16786
This theorem is referenced by:  strfv  16808
  Copyright terms: Public domain W3C validator