| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfv2 | Structured version Visualization version GIF version | ||
| Description: A variation on strfv 17180 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| strfv2.s | ⊢ 𝑆 ∈ V |
| strfv2.f | ⊢ Fun ◡◡𝑆 |
| strfv2.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| strfv2.n | ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
| Ref | Expression |
|---|---|
| strfv2 | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv2.e | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | strfv2.s | . . 3 ⊢ 𝑆 ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝑆 ∈ V) |
| 4 | strfv2.f | . . 3 ⊢ Fun ◡◡𝑆 | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝐶 ∈ 𝑉 → Fun ◡◡𝑆) |
| 6 | strfv2.n | . . 3 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐶 ∈ 𝑉 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
| 8 | id 22 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ 𝑉) | |
| 9 | 1, 3, 5, 7, 8 | strfv2d 17178 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 ◡ccnv 5640 Fun wfun 6508 ‘cfv 6514 Slot cslot 17158 ndxcnx 17170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 df-slot 17159 |
| This theorem is referenced by: strfv 17180 |
| Copyright terms: Public domain | W3C validator |