MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucexeloni Structured version   Visualization version   GIF version

Theorem sucexeloni 7765
Description: If the successor of an ordinal number exists, it is an ordinal number. This variation of onsuc 7767 does not require ax-un 7691. (Contributed by BTernaryTau, 30-Nov-2024.) (Proof shortened by BJ, 11-Jan-2025.)
Assertion
Ref Expression
sucexeloni ((𝐴 ∈ On ∧ suc 𝐴𝑉) → suc 𝐴 ∈ On)

Proof of Theorem sucexeloni
StepHypRef Expression
1 eloni 6330 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 ordsuci 7764 . . 3 (Ord 𝐴 → Ord suc 𝐴)
31, 2syl 17 . 2 (𝐴 ∈ On → Ord suc 𝐴)
4 elex 3465 . 2 (suc 𝐴𝑉 → suc 𝐴 ∈ V)
5 elong 6328 . . 3 (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
65biimparc 479 . 2 ((Ord suc 𝐴 ∧ suc 𝐴 ∈ V) → suc 𝐴 ∈ On)
73, 4, 6syl2an 596 1 ((𝐴 ∈ On ∧ suc 𝐴𝑉) → suc 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3444  Ord word 6319  Oncon0 6320  suc csuc 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-suc 6326
This theorem is referenced by:  onsuc  7767  1on  8423  2on  8424
  Copyright terms: Public domain W3C validator