| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucexeloni | Structured version Visualization version GIF version | ||
| Description: If the successor of an ordinal number exists, it is an ordinal number. This variation of onsuc 7752 does not require ax-un 7677. (Contributed by BTernaryTau, 30-Nov-2024.) (Proof shortened by BJ, 11-Jan-2025.) |
| Ref | Expression |
|---|---|
| sucexeloni | ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6324 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordsuci 7750 | . . 3 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
| 4 | elex 3458 | . 2 ⊢ (suc 𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) | |
| 5 | elong 6322 | . . 3 ⊢ (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) | |
| 6 | 5 | biimparc 479 | . 2 ⊢ ((Ord suc 𝐴 ∧ suc 𝐴 ∈ V) → suc 𝐴 ∈ On) |
| 7 | 3, 4, 6 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → suc 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 Ord word 6313 Oncon0 6314 suc csuc 6316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 df-on 6318 df-suc 6320 |
| This theorem is referenced by: onsuc 7752 1on 8406 2on 8407 |
| Copyright terms: Public domain | W3C validator |