MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucexeloni Structured version   Visualization version   GIF version

Theorem sucexeloni 7793
Description: If the successor of an ordinal number exists, it is an ordinal number. This variation of onsuc 7795 does not require ax-un 7721. (Contributed by BTernaryTau, 30-Nov-2024.) (Proof shortened by BJ, 11-Jan-2025.)
Assertion
Ref Expression
sucexeloni ((𝐴 ∈ On ∧ suc 𝐴𝑉) → suc 𝐴 ∈ On)

Proof of Theorem sucexeloni
StepHypRef Expression
1 eloni 6371 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 ordsuci 7792 . . 3 (Ord 𝐴 → Ord suc 𝐴)
31, 2syl 17 . 2 (𝐴 ∈ On → Ord suc 𝐴)
4 elex 3492 . 2 (suc 𝐴𝑉 → suc 𝐴 ∈ V)
5 elong 6369 . . 3 (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
65biimparc 480 . 2 ((Ord suc 𝐴 ∧ suc 𝐴 ∈ V) → suc 𝐴 ∈ On)
73, 4, 6syl2an 596 1 ((𝐴 ∈ On ∧ suc 𝐴𝑉) → suc 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3474  Ord word 6360  Oncon0 6361  suc csuc 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-suc 6367
This theorem is referenced by:  onsuc  7795  1on  8474  2on  8476
  Copyright terms: Public domain W3C validator