MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucexeloni Structured version   Visualization version   GIF version

Theorem sucexeloni 7658
Description: If the successor of an ordinal number exists, it is an ordinal number. This variation of suceloni 7659 does not require ax-un 7588. (Contributed by BTernaryTau, 30-Nov-2024.)
Assertion
Ref Expression
sucexeloni ((𝐴 ∈ On ∧ suc 𝐴𝑉) → suc 𝐴 ∈ On)

Proof of Theorem sucexeloni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 onelss 6308 . . . . . . . . 9 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
2 velsn 4577 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 eqimss 3977 . . . . . . . . . . 11 (𝑥 = 𝐴𝑥𝐴)
42, 3sylbi 216 . . . . . . . . . 10 (𝑥 ∈ {𝐴} → 𝑥𝐴)
54a1i 11 . . . . . . . . 9 (𝐴 ∈ On → (𝑥 ∈ {𝐴} → 𝑥𝐴))
61, 5orim12d 962 . . . . . . . 8 (𝐴 ∈ On → ((𝑥𝐴𝑥 ∈ {𝐴}) → (𝑥𝐴𝑥𝐴)))
7 df-suc 6272 . . . . . . . . . 10 suc 𝐴 = (𝐴 ∪ {𝐴})
87eleq2i 2830 . . . . . . . . 9 (𝑥 ∈ suc 𝐴𝑥 ∈ (𝐴 ∪ {𝐴}))
9 elun 4083 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥𝐴𝑥 ∈ {𝐴}))
108, 9bitr2i 275 . . . . . . . 8 ((𝑥𝐴𝑥 ∈ {𝐴}) ↔ 𝑥 ∈ suc 𝐴)
11 oridm 902 . . . . . . . 8 ((𝑥𝐴𝑥𝐴) ↔ 𝑥𝐴)
126, 10, 113imtr3g 295 . . . . . . 7 (𝐴 ∈ On → (𝑥 ∈ suc 𝐴𝑥𝐴))
13 sssucid 6343 . . . . . . 7 𝐴 ⊆ suc 𝐴
14 sstr2 3928 . . . . . . 7 (𝑥𝐴 → (𝐴 ⊆ suc 𝐴𝑥 ⊆ suc 𝐴))
1512, 13, 14syl6mpi 67 . . . . . 6 (𝐴 ∈ On → (𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴))
1615ralrimiv 3102 . . . . 5 (𝐴 ∈ On → ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴)
17 dftr3 5195 . . . . 5 (Tr suc 𝐴 ↔ ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴)
1816, 17sylibr 233 . . . 4 (𝐴 ∈ On → Tr suc 𝐴)
19 onss 7634 . . . . . 6 (𝐴 ∈ On → 𝐴 ⊆ On)
20 snssi 4741 . . . . . 6 (𝐴 ∈ On → {𝐴} ⊆ On)
2119, 20unssd 4120 . . . . 5 (𝐴 ∈ On → (𝐴 ∪ {𝐴}) ⊆ On)
227, 21eqsstrid 3969 . . . 4 (𝐴 ∈ On → suc 𝐴 ⊆ On)
23 ordon 7627 . . . . 5 Ord On
24 trssord 6283 . . . . . 6 ((Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) → Ord suc 𝐴)
25243exp 1118 . . . . 5 (Tr suc 𝐴 → (suc 𝐴 ⊆ On → (Ord On → Ord suc 𝐴)))
2623, 25mpii 46 . . . 4 (Tr suc 𝐴 → (suc 𝐴 ⊆ On → Ord suc 𝐴))
2718, 22, 26sylc 65 . . 3 (𝐴 ∈ On → Ord suc 𝐴)
2827adantr 481 . 2 ((𝐴 ∈ On ∧ suc 𝐴𝑉) → Ord suc 𝐴)
29 elong 6274 . . 3 (suc 𝐴𝑉 → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
3029adantl 482 . 2 ((𝐴 ∈ On ∧ suc 𝐴𝑉) → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
3128, 30mpbird 256 1 ((𝐴 ∈ On ∧ suc 𝐴𝑉) → suc 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  cun 3885  wss 3887  {csn 4561  Tr wtr 5191  Ord word 6265  Oncon0 6266  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-suc 6272
This theorem is referenced by:  suceloni  7659  1on  8309  2on  8311
  Copyright terms: Public domain W3C validator