Step | Hyp | Ref
| Expression |
1 | | onelss 6308 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) |
2 | | velsn 4577 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
3 | | eqimss 3977 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → 𝑥 ⊆ 𝐴) |
4 | 2, 3 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝐴} → 𝑥 ⊆ 𝐴) |
5 | 4 | a1i 11 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → (𝑥 ∈ {𝐴} → 𝑥 ⊆ 𝐴)) |
6 | 1, 5 | orim12d 962 |
. . . . . . . 8
⊢ (𝐴 ∈ On → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴}) → (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐴))) |
7 | | df-suc 6272 |
. . . . . . . . . 10
⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
8 | 7 | eleq2i 2830 |
. . . . . . . . 9
⊢ (𝑥 ∈ suc 𝐴 ↔ 𝑥 ∈ (𝐴 ∪ {𝐴})) |
9 | | elun 4083 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴})) |
10 | 8, 9 | bitr2i 275 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴}) ↔ 𝑥 ∈ suc 𝐴) |
11 | | oridm 902 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐴) ↔ 𝑥 ⊆ 𝐴) |
12 | 6, 10, 11 | 3imtr3g 295 |
. . . . . . 7
⊢ (𝐴 ∈ On → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ 𝐴)) |
13 | | sssucid 6343 |
. . . . . . 7
⊢ 𝐴 ⊆ suc 𝐴 |
14 | | sstr2 3928 |
. . . . . . 7
⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ suc 𝐴 → 𝑥 ⊆ suc 𝐴)) |
15 | 12, 13, 14 | syl6mpi 67 |
. . . . . 6
⊢ (𝐴 ∈ On → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ suc 𝐴)) |
16 | 15 | ralrimiv 3102 |
. . . . 5
⊢ (𝐴 ∈ On → ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴) |
17 | | dftr3 5195 |
. . . . 5
⊢ (Tr suc
𝐴 ↔ ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴) |
18 | 16, 17 | sylibr 233 |
. . . 4
⊢ (𝐴 ∈ On → Tr suc 𝐴) |
19 | | onss 7634 |
. . . . . 6
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
20 | | snssi 4741 |
. . . . . 6
⊢ (𝐴 ∈ On → {𝐴} ⊆ On) |
21 | 19, 20 | unssd 4120 |
. . . . 5
⊢ (𝐴 ∈ On → (𝐴 ∪ {𝐴}) ⊆ On) |
22 | 7, 21 | eqsstrid 3969 |
. . . 4
⊢ (𝐴 ∈ On → suc 𝐴 ⊆ On) |
23 | | ordon 7627 |
. . . . 5
⊢ Ord
On |
24 | | trssord 6283 |
. . . . . 6
⊢ ((Tr suc
𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) →
Ord suc 𝐴) |
25 | 24 | 3exp 1118 |
. . . . 5
⊢ (Tr suc
𝐴 → (suc 𝐴 ⊆ On → (Ord On
→ Ord suc 𝐴))) |
26 | 23, 25 | mpii 46 |
. . . 4
⊢ (Tr suc
𝐴 → (suc 𝐴 ⊆ On → Ord suc 𝐴)) |
27 | 18, 22, 26 | sylc 65 |
. . 3
⊢ (𝐴 ∈ On → Ord suc 𝐴) |
28 | 27 | adantr 481 |
. 2
⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → Ord suc 𝐴) |
29 | | elong 6274 |
. . 3
⊢ (suc
𝐴 ∈ 𝑉 → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) |
30 | 29 | adantl 482 |
. 2
⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) |
31 | 28, 30 | mpbird 256 |
1
⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → suc 𝐴 ∈ On) |