![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucexeloni | Structured version Visualization version GIF version |
Description: If the successor of an ordinal number exists, it is an ordinal number. This variation of onsuc 7795 does not require ax-un 7721. (Contributed by BTernaryTau, 30-Nov-2024.) (Proof shortened by BJ, 11-Jan-2025.) |
Ref | Expression |
---|---|
sucexeloni | ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6371 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordsuci 7792 | . . 3 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
4 | elex 3492 | . 2 ⊢ (suc 𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) | |
5 | elong 6369 | . . 3 ⊢ (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) | |
6 | 5 | biimparc 480 | . 2 ⊢ ((Ord suc 𝐴 ∧ suc 𝐴 ∈ V) → suc 𝐴 ∈ On) |
7 | 3, 4, 6 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → suc 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 Ord word 6360 Oncon0 6361 suc csuc 6363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-suc 6367 |
This theorem is referenced by: onsuc 7795 1on 8474 2on 8476 |
Copyright terms: Public domain | W3C validator |