| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumeq2sdv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Proof shortened by Glauco Siliprandi, 5-Apr-2020.) Avoid axioms. (Revised by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| sumeq2sdv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sumeq2sdv | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq2sdv.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | csbeq2dv 3906 | . . . . . . . . . 10 ⊢ (𝜑 → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑛 / 𝑘⦌𝐶) |
| 3 | 2 | ifeq1d 4545 | . . . . . . . . 9 ⊢ (𝜑 → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) = if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) |
| 4 | 3 | mpteq2dv 5244 | . . . . . . . 8 ⊢ (𝜑 → (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) |
| 5 | 4 | seqeq3d 14050 | . . . . . . 7 ⊢ (𝜑 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)))) |
| 6 | 5 | breq1d 5153 | . . . . . 6 ⊢ (𝜑 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥)) |
| 7 | 6 | anbi2d 630 | . . . . 5 ⊢ (𝜑 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥))) |
| 8 | 7 | rexbidv 3179 | . . . 4 ⊢ (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥))) |
| 9 | 1 | csbeq2dv 3906 | . . . . . . . . . . 11 ⊢ (𝜑 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) |
| 10 | 9 | mpteq2dv 5244 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)) |
| 11 | 10 | seqeq3d 14050 | . . . . . . . . 9 ⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵)) = seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))) |
| 12 | 11 | fveq1d 6908 | . . . . . . . 8 ⊢ (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)) |
| 13 | 12 | eqeq2d 2748 | . . . . . . 7 ⊢ (𝜑 → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))) |
| 14 | 13 | anbi2d 630 | . . . . . 6 ⊢ (𝜑 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
| 15 | 14 | exbidv 1921 | . . . . 5 ⊢ (𝜑 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
| 16 | 15 | rexbidv 3179 | . . . 4 ⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
| 17 | 8, 16 | orbi12d 919 | . . 3 ⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))))) |
| 18 | 17 | iotabidv 6545 | . 2 ⊢ (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))))) |
| 19 | df-sum 15723 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
| 20 | df-sum 15723 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) | |
| 21 | 18, 19, 20 | 3eqtr4g 2802 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃wrex 3070 ⦋csb 3899 ⊆ wss 3951 ifcif 4525 class class class wbr 5143 ↦ cmpt 5225 ℩cio 6512 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 + caddc 11158 ℕcn 12266 ℤcz 12613 ℤ≥cuz 12878 ...cfz 13547 seqcseq 14042 ⇝ cli 15520 Σcsu 15722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-xp 5691 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-iota 6514 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-seq 14043 df-sum 15723 |
| This theorem is referenced by: sumsplit 15804 fsumrlim 15847 hash2iun1dif1 15860 incexclem 15872 bpolylem 16084 bpolyval 16085 efval 16115 rpnnen2lem12 16261 pcfac 16937 ramcl 17067 cshwshashnsame 17141 fsumcn 24894 fsum2cn 24895 lebnumlem3 24995 rrxdsfival 25447 uniioombllem6 25623 itg1climres 25749 itgeq1f 25806 itgeq1fOLD 25807 itgeq1 25808 cbvitgv 25812 itgeq2 25813 dvmptfsum 26013 elplyr 26240 plyeq0lem 26249 plyadd 26256 plymul 26257 coeeu 26264 coelem 26265 coeeq 26266 coeidlem 26276 coeid 26277 coeid2 26278 plyco 26280 plycjlem 26316 aareccl 26368 taylply2 26409 taylply2OLD 26410 pserdvlem2 26472 pserdv 26473 abelthlem6 26480 abelthlem9 26484 logtayl 26702 leibpi 26985 basellem3 27126 dchrvmasum2if 27541 dchrvmaeq0 27548 rpvmasum2 27556 dchrisum0re 27557 brcgr 28915 axsegcon 28942 dipfval 30721 ipval 30722 fsumiunle 32831 itgeq12dv 34328 eulerpartleme 34365 eulerpartlemr 34376 eulerpartlemn 34383 reprsum 34628 reprsuc 34630 reprpmtf1o 34641 vtsval 34652 iprodgam 35742 fwddifnval 36164 sumeq12sdv 36218 itgeq12sdv 36220 cbvitgdavw 36282 cbvitgdavw2 36298 knoppndvlem6 36518 knoppf 36536 rrnmval 37835 fsumshftd 38953 fsumcnf 45026 mccl 45613 dvnmul 45958 dvmptfprod 45960 dvnprodlem1 45961 dvnprodlem3 45963 dvnprod 45964 stoweidlem17 46032 stoweidlem26 46041 stoweidlem30 46045 stoweidlem32 46047 dirkertrigeq 46116 dirkeritg 46117 fourierdlem83 46204 fourierdlem103 46224 etransclem11 46260 etransclem24 46273 etransclem26 46275 etransclem27 46276 etransclem28 46277 etransclem31 46280 etransclem35 46284 etransclem46 46295 etransclem47 46296 rrndistlt 46305 ioorrnopn 46320 sge0val 46381 hoiqssbllem2 46638 nnsum3primes4 47775 nnsum4primesodd 47783 nnsum4primesoddALTV 47784 nnsum4primesevenALTV 47788 nn0sumshdiglemB 48541 nn0sumshdiglem1 48542 aacllem 49320 |
| Copyright terms: Public domain | W3C validator |