Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sumeq2sdv | Structured version Visualization version GIF version |
Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Proof shortened by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
sumeq2sdv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sumeq2sdv | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq2sdv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | ralrimivw 3104 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
3 | 2 | sumeq2d 15414 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
Copyright terms: Public domain | W3C validator |