MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumeq2sdv Structured version   Visualization version   GIF version

Theorem sumeq2sdv 15751
Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Proof shortened by Glauco Siliprandi, 5-Apr-2020.) Avoid axioms. (Revised by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
sumeq2sdv.1 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
sumeq2sdv (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sumeq2sdv
Dummy variables 𝑥 𝑚 𝑛 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq2sdv.1 . . . . . . . . . . 11 (𝜑𝐵 = 𝐶)
21csbeq2dv 3928 . . . . . . . . . 10 (𝜑𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶)
32ifeq1d 4567 . . . . . . . . 9 (𝜑 → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))
43mpteq2dv 5268 . . . . . . . 8 (𝜑 → (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))
54seqeq3d 14060 . . . . . . 7 (𝜑 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))))
65breq1d 5176 . . . . . 6 (𝜑 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
76anbi2d 629 . . . . 5 (𝜑 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
87rexbidv 3185 . . . 4 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
91csbeq2dv 3928 . . . . . . . . . . 11 (𝜑(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶)
109mpteq2dv 5268 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))
1110seqeq3d 14060 . . . . . . . . 9 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)) = seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)))
1211fveq1d 6922 . . . . . . . 8 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))
1312eqeq2d 2751 . . . . . . 7 (𝜑 → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
1413anbi2d 629 . . . . . 6 (𝜑 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
1514exbidv 1920 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
1615rexbidv 3185 . . . 4 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
178, 16orbi12d 917 . . 3 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
1817iotabidv 6557 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
19 df-sum 15735 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
20 df-sum 15735 . 2 Σ𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2118, 19, 203eqtr4g 2805 1 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  wrex 3076  csb 3921  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  cio 6523  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  cn 12293  cz 12639  cuz 12903  ...cfz 13567  seqcseq 14052  cli 15530  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seq 14053  df-sum 15735
This theorem is referenced by:  sumsplit  15816  fsumrlim  15859  hash2iun1dif1  15872  incexclem  15884  bpolylem  16096  bpolyval  16097  efval  16127  rpnnen2lem12  16273  pcfac  16946  ramcl  17076  cshwshashnsame  17151  fsumcn  24913  fsum2cn  24914  lebnumlem3  25014  rrxdsfival  25466  uniioombllem6  25642  itg1climres  25769  itgeq1f  25826  itgeq1fOLD  25827  itgeq1  25828  cbvitgv  25832  itgeq2  25833  dvmptfsum  26033  elplyr  26260  plyeq0lem  26269  plyadd  26276  plymul  26277  coeeu  26284  coelem  26285  coeeq  26286  coeidlem  26296  coeid  26297  coeid2  26298  plyco  26300  plycjlem  26336  aareccl  26386  taylply2  26427  taylply2OLD  26428  pserdvlem2  26490  pserdv  26491  abelthlem6  26498  abelthlem9  26502  logtayl  26720  leibpi  27003  basellem3  27144  dchrvmasum2if  27559  dchrvmaeq0  27566  rpvmasum2  27574  dchrisum0re  27575  brcgr  28933  axsegcon  28960  dipfval  30734  ipval  30735  fsumiunle  32833  itgeq12dv  34291  eulerpartleme  34328  eulerpartlemr  34339  eulerpartlemn  34346  reprsum  34590  reprsuc  34592  reprpmtf1o  34603  vtsval  34614  iprodgam  35704  fwddifnval  36127  sumeq12sdv  36183  itgeq12sdv  36185  cbvitgdavw  36247  cbvitgdavw2  36263  knoppndvlem6  36483  knoppf  36501  rrnmval  37788  fsumshftd  38908  fsumcnf  44921  mccl  45519  dvnmul  45864  dvmptfprod  45866  dvnprodlem1  45867  dvnprodlem3  45869  dvnprod  45870  stoweidlem17  45938  stoweidlem26  45947  stoweidlem30  45951  stoweidlem32  45953  dirkertrigeq  46022  dirkeritg  46023  fourierdlem83  46110  fourierdlem103  46130  etransclem11  46166  etransclem24  46179  etransclem26  46181  etransclem27  46182  etransclem28  46183  etransclem31  46186  etransclem35  46190  etransclem46  46201  etransclem47  46202  rrndistlt  46211  ioorrnopn  46226  sge0val  46287  hoiqssbllem2  46544  nnsum3primes4  47662  nnsum4primesodd  47670  nnsum4primesoddALTV  47671  nnsum4primesevenALTV  47675  nn0sumshdiglemB  48354  nn0sumshdiglem1  48355  aacllem  48895
  Copyright terms: Public domain W3C validator