| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumeq2sdv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Proof shortened by Glauco Siliprandi, 5-Apr-2020.) Avoid axioms. (Revised by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| sumeq2sdv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sumeq2sdv | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq2sdv.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | csbeq2dv 3881 | . . . . . . . . . 10 ⊢ (𝜑 → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑛 / 𝑘⦌𝐶) |
| 3 | 2 | ifeq1d 4520 | . . . . . . . . 9 ⊢ (𝜑 → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) = if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) |
| 4 | 3 | mpteq2dv 5215 | . . . . . . . 8 ⊢ (𝜑 → (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) |
| 5 | 4 | seqeq3d 14025 | . . . . . . 7 ⊢ (𝜑 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)))) |
| 6 | 5 | breq1d 5129 | . . . . . 6 ⊢ (𝜑 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥)) |
| 7 | 6 | anbi2d 630 | . . . . 5 ⊢ (𝜑 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥))) |
| 8 | 7 | rexbidv 3164 | . . . 4 ⊢ (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥))) |
| 9 | 1 | csbeq2dv 3881 | . . . . . . . . . . 11 ⊢ (𝜑 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) |
| 10 | 9 | mpteq2dv 5215 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)) |
| 11 | 10 | seqeq3d 14025 | . . . . . . . . 9 ⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵)) = seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))) |
| 12 | 11 | fveq1d 6877 | . . . . . . . 8 ⊢ (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)) |
| 13 | 12 | eqeq2d 2746 | . . . . . . 7 ⊢ (𝜑 → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))) |
| 14 | 13 | anbi2d 630 | . . . . . 6 ⊢ (𝜑 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
| 15 | 14 | exbidv 1921 | . . . . 5 ⊢ (𝜑 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
| 16 | 15 | rexbidv 3164 | . . . 4 ⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
| 17 | 8, 16 | orbi12d 918 | . . 3 ⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))))) |
| 18 | 17 | iotabidv 6514 | . 2 ⊢ (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))))) |
| 19 | df-sum 15701 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
| 20 | df-sum 15701 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) | |
| 21 | 18, 19, 20 | 3eqtr4g 2795 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 ⦋csb 3874 ⊆ wss 3926 ifcif 4500 class class class wbr 5119 ↦ cmpt 5201 ℩cio 6481 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 0cc0 11127 1c1 11128 + caddc 11130 ℕcn 12238 ℤcz 12586 ℤ≥cuz 12850 ...cfz 13522 seqcseq 14017 ⇝ cli 15498 Σcsu 15700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-xp 5660 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6483 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-seq 14018 df-sum 15701 |
| This theorem is referenced by: sumsplit 15782 fsumrlim 15825 hash2iun1dif1 15838 incexclem 15850 bpolylem 16062 bpolyval 16063 efval 16093 rpnnen2lem12 16241 pcfac 16917 ramcl 17047 cshwshashnsame 17121 fsumcn 24810 fsum2cn 24811 lebnumlem3 24911 rrxdsfival 25363 uniioombllem6 25539 itg1climres 25665 itgeq1f 25722 itgeq1fOLD 25723 itgeq1 25724 cbvitgv 25728 itgeq2 25729 dvmptfsum 25929 elplyr 26156 plyeq0lem 26165 plyadd 26172 plymul 26173 coeeu 26180 coelem 26181 coeeq 26182 coeidlem 26192 coeid 26193 coeid2 26194 plyco 26196 plycjlem 26232 aareccl 26284 taylply2 26325 taylply2OLD 26326 pserdvlem2 26388 pserdv 26389 abelthlem6 26396 abelthlem9 26400 logtayl 26619 leibpi 26902 basellem3 27043 dchrvmasum2if 27458 dchrvmaeq0 27465 rpvmasum2 27473 dchrisum0re 27474 brcgr 28825 axsegcon 28852 dipfval 30629 ipval 30630 fsumiunle 32754 itgeq12dv 34304 eulerpartleme 34341 eulerpartlemr 34352 eulerpartlemn 34359 reprsum 34591 reprsuc 34593 reprpmtf1o 34604 vtsval 34615 iprodgam 35705 fwddifnval 36127 sumeq12sdv 36181 itgeq12sdv 36183 cbvitgdavw 36245 cbvitgdavw2 36261 knoppndvlem6 36481 knoppf 36499 rrnmval 37798 fsumshftd 38916 fsumcnf 44993 mccl 45575 dvnmul 45920 dvmptfprod 45922 dvnprodlem1 45923 dvnprodlem3 45925 dvnprod 45926 stoweidlem17 45994 stoweidlem26 46003 stoweidlem30 46007 stoweidlem32 46009 dirkertrigeq 46078 dirkeritg 46079 fourierdlem83 46166 fourierdlem103 46186 etransclem11 46222 etransclem24 46235 etransclem26 46237 etransclem27 46238 etransclem28 46239 etransclem31 46242 etransclem35 46246 etransclem46 46257 etransclem47 46258 rrndistlt 46267 ioorrnopn 46282 sge0val 46343 hoiqssbllem2 46600 nnsum3primes4 47750 nnsum4primesodd 47758 nnsum4primesoddALTV 47759 nnsum4primesevenALTV 47763 nn0sumshdiglemB 48548 nn0sumshdiglem1 48549 aacllem 49613 |
| Copyright terms: Public domain | W3C validator |