![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumeq2sdv | Structured version Visualization version GIF version |
Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Proof shortened by Glauco Siliprandi, 5-Apr-2020.) Avoid axioms. (Revised by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
sumeq2sdv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sumeq2sdv | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq2sdv.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | csbeq2dv 3928 | . . . . . . . . . 10 ⊢ (𝜑 → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑛 / 𝑘⦌𝐶) |
3 | 2 | ifeq1d 4567 | . . . . . . . . 9 ⊢ (𝜑 → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) = if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) |
4 | 3 | mpteq2dv 5268 | . . . . . . . 8 ⊢ (𝜑 → (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) |
5 | 4 | seqeq3d 14060 | . . . . . . 7 ⊢ (𝜑 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)))) |
6 | 5 | breq1d 5176 | . . . . . 6 ⊢ (𝜑 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥)) |
7 | 6 | anbi2d 629 | . . . . 5 ⊢ (𝜑 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥))) |
8 | 7 | rexbidv 3185 | . . . 4 ⊢ (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥))) |
9 | 1 | csbeq2dv 3928 | . . . . . . . . . . 11 ⊢ (𝜑 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) |
10 | 9 | mpteq2dv 5268 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)) |
11 | 10 | seqeq3d 14060 | . . . . . . . . 9 ⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵)) = seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))) |
12 | 11 | fveq1d 6922 | . . . . . . . 8 ⊢ (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)) |
13 | 12 | eqeq2d 2751 | . . . . . . 7 ⊢ (𝜑 → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))) |
14 | 13 | anbi2d 629 | . . . . . 6 ⊢ (𝜑 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
15 | 14 | exbidv 1920 | . . . . 5 ⊢ (𝜑 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
16 | 15 | rexbidv 3185 | . . . 4 ⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
17 | 8, 16 | orbi12d 917 | . . 3 ⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))))) |
18 | 17 | iotabidv 6557 | . 2 ⊢ (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))))) |
19 | df-sum 15735 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
20 | df-sum 15735 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) | |
21 | 18, 19, 20 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 ⦋csb 3921 ⊆ wss 3976 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 ℩cio 6523 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 ℕcn 12293 ℤcz 12639 ℤ≥cuz 12903 ...cfz 13567 seqcseq 14052 ⇝ cli 15530 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seq 14053 df-sum 15735 |
This theorem is referenced by: sumsplit 15816 fsumrlim 15859 hash2iun1dif1 15872 incexclem 15884 bpolylem 16096 bpolyval 16097 efval 16127 rpnnen2lem12 16273 pcfac 16946 ramcl 17076 cshwshashnsame 17151 fsumcn 24913 fsum2cn 24914 lebnumlem3 25014 rrxdsfival 25466 uniioombllem6 25642 itg1climres 25769 itgeq1f 25826 itgeq1fOLD 25827 itgeq1 25828 cbvitgv 25832 itgeq2 25833 dvmptfsum 26033 elplyr 26260 plyeq0lem 26269 plyadd 26276 plymul 26277 coeeu 26284 coelem 26285 coeeq 26286 coeidlem 26296 coeid 26297 coeid2 26298 plyco 26300 plycjlem 26336 aareccl 26386 taylply2 26427 taylply2OLD 26428 pserdvlem2 26490 pserdv 26491 abelthlem6 26498 abelthlem9 26502 logtayl 26720 leibpi 27003 basellem3 27144 dchrvmasum2if 27559 dchrvmaeq0 27566 rpvmasum2 27574 dchrisum0re 27575 brcgr 28933 axsegcon 28960 dipfval 30734 ipval 30735 fsumiunle 32833 itgeq12dv 34291 eulerpartleme 34328 eulerpartlemr 34339 eulerpartlemn 34346 reprsum 34590 reprsuc 34592 reprpmtf1o 34603 vtsval 34614 iprodgam 35704 fwddifnval 36127 sumeq12sdv 36183 itgeq12sdv 36185 cbvitgdavw 36247 cbvitgdavw2 36263 knoppndvlem6 36483 knoppf 36501 rrnmval 37788 fsumshftd 38908 fsumcnf 44921 mccl 45519 dvnmul 45864 dvmptfprod 45866 dvnprodlem1 45867 dvnprodlem3 45869 dvnprod 45870 stoweidlem17 45938 stoweidlem26 45947 stoweidlem30 45951 stoweidlem32 45953 dirkertrigeq 46022 dirkeritg 46023 fourierdlem83 46110 fourierdlem103 46130 etransclem11 46166 etransclem24 46179 etransclem26 46181 etransclem27 46182 etransclem28 46183 etransclem31 46186 etransclem35 46190 etransclem46 46201 etransclem47 46202 rrndistlt 46211 ioorrnopn 46226 sge0val 46287 hoiqssbllem2 46544 nnsum3primes4 47662 nnsum4primesodd 47670 nnsum4primesoddALTV 47671 nnsum4primesevenALTV 47675 nn0sumshdiglemB 48354 nn0sumshdiglem1 48355 aacllem 48895 |
Copyright terms: Public domain | W3C validator |