Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ztprmneprm Structured version   Visualization version   GIF version

Theorem ztprmneprm 45310
Description: A prime is not an integer multiple of another prime. (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
ztprmneprm ((𝑍 ∈ ℤ ∧ 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))

Proof of Theorem ztprmneprm
StepHypRef Expression
1 elznn0nn 12173 . . 3 (𝑍 ∈ ℤ ↔ (𝑍 ∈ ℕ0 ∨ (𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ)))
2 elnn0 12075 . . . . 5 (𝑍 ∈ ℕ0 ↔ (𝑍 ∈ ℕ ∨ 𝑍 = 0))
3 elnn1uz2 12504 . . . . . . 7 (𝑍 ∈ ℕ ↔ (𝑍 = 1 ∨ 𝑍 ∈ (ℤ‘2)))
4 oveq1 7209 . . . . . . . . . . . 12 (𝑍 = 1 → (𝑍 · 𝐴) = (1 · 𝐴))
54adantr 484 . . . . . . . . . . 11 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → (𝑍 · 𝐴) = (1 · 𝐴))
65eqeq1d 2736 . . . . . . . . . 10 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵 ↔ (1 · 𝐴) = 𝐵))
7 prmz 16213 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℙ → 𝐴 ∈ ℤ)
87zcnd 12266 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℙ → 𝐴 ∈ ℂ)
98mulid2d 10834 . . . . . . . . . . . . . 14 (𝐴 ∈ ℙ → (1 · 𝐴) = 𝐴)
109adantr 484 . . . . . . . . . . . . 13 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (1 · 𝐴) = 𝐴)
1110eqeq1d 2736 . . . . . . . . . . . 12 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
1211biimpd 232 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
1312adantl 485 . . . . . . . . . 10 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
146, 13sylbid 243 . . . . . . . . 9 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
1514ex 416 . . . . . . . 8 (𝑍 = 1 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
16 prmuz2 16234 . . . . . . . . . . . 12 (𝐴 ∈ ℙ → 𝐴 ∈ (ℤ‘2))
1716adantr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 ∈ (ℤ‘2))
18 nprm 16226 . . . . . . . . . . 11 ((𝑍 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (𝑍 · 𝐴) ∈ ℙ)
1917, 18sylan2 596 . . . . . . . . . 10 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ¬ (𝑍 · 𝐴) ∈ ℙ)
20 eleq1 2821 . . . . . . . . . . . . 13 ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) ∈ ℙ ↔ 𝐵 ∈ ℙ))
2120notbid 321 . . . . . . . . . . . 12 ((𝑍 · 𝐴) = 𝐵 → (¬ (𝑍 · 𝐴) ∈ ℙ ↔ ¬ 𝐵 ∈ ℙ))
22 pm2.24 124 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℙ → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2322adantl 485 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2423adantl 485 . . . . . . . . . . . . 13 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2524com12 32 . . . . . . . . . . . 12 𝐵 ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → 𝐴 = 𝐵))
2621, 25syl6bi 256 . . . . . . . . . . 11 ((𝑍 · 𝐴) = 𝐵 → (¬ (𝑍 · 𝐴) ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → 𝐴 = 𝐵)))
2726com3l 89 . . . . . . . . . 10 (¬ (𝑍 · 𝐴) ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
2819, 27mpcom 38 . . . . . . . . 9 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
2928ex 416 . . . . . . . 8 (𝑍 ∈ (ℤ‘2) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
3015, 29jaoi 857 . . . . . . 7 ((𝑍 = 1 ∨ 𝑍 ∈ (ℤ‘2)) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
313, 30sylbi 220 . . . . . 6 (𝑍 ∈ ℕ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
32 oveq1 7209 . . . . . . . . 9 (𝑍 = 0 → (𝑍 · 𝐴) = (0 · 𝐴))
3332eqeq1d 2736 . . . . . . . 8 (𝑍 = 0 → ((𝑍 · 𝐴) = 𝐵 ↔ (0 · 𝐴) = 𝐵))
34 prmnn 16212 . . . . . . . . . . . . . 14 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
3534nnred 11828 . . . . . . . . . . . . 13 (𝐴 ∈ ℙ → 𝐴 ∈ ℝ)
36 mul02lem2 10992 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
3735, 36syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℙ → (0 · 𝐴) = 0)
3837adantr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (0 · 𝐴) = 0)
3938eqeq1d 2736 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((0 · 𝐴) = 𝐵 ↔ 0 = 𝐵))
40 prmnn 16212 . . . . . . . . . . . 12 (𝐵 ∈ ℙ → 𝐵 ∈ ℕ)
41 elnnne0 12087 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ ↔ (𝐵 ∈ ℕ0𝐵 ≠ 0))
42 eqneqall 2946 . . . . . . . . . . . . . . . 16 (𝐵 = 0 → (𝐵 ≠ 0 → 𝐴 = 𝐵))
4342eqcoms 2742 . . . . . . . . . . . . . . 15 (0 = 𝐵 → (𝐵 ≠ 0 → 𝐴 = 𝐵))
4443com12 32 . . . . . . . . . . . . . 14 (𝐵 ≠ 0 → (0 = 𝐵𝐴 = 𝐵))
4544adantl 485 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0𝐵 ≠ 0) → (0 = 𝐵𝐴 = 𝐵))
4641, 45sylbi 220 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (0 = 𝐵𝐴 = 𝐵))
4740, 46syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℙ → (0 = 𝐵𝐴 = 𝐵))
4847adantl 485 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (0 = 𝐵𝐴 = 𝐵))
4939, 48sylbid 243 . . . . . . . . 9 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((0 · 𝐴) = 𝐵𝐴 = 𝐵))
5049com12 32 . . . . . . . 8 ((0 · 𝐴) = 𝐵 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 = 𝐵))
5133, 50syl6bi 256 . . . . . . 7 (𝑍 = 0 → ((𝑍 · 𝐴) = 𝐵 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 = 𝐵)))
5251com23 86 . . . . . 6 (𝑍 = 0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
5331, 52jaoi 857 . . . . 5 ((𝑍 ∈ ℕ ∨ 𝑍 = 0) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
542, 53sylbi 220 . . . 4 (𝑍 ∈ ℕ0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
55 elnnz 12169 . . . . . 6 (-𝑍 ∈ ℕ ↔ (-𝑍 ∈ ℤ ∧ 0 < -𝑍))
56 lt0neg1 11321 . . . . . . . 8 (𝑍 ∈ ℝ → (𝑍 < 0 ↔ 0 < -𝑍))
5734nngt0d 11862 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℙ → 0 < 𝐴)
5857adantr 484 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 0 < 𝐴)
59 simpr 488 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → 𝑍 < 0)
6058, 59anim12ci 617 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → (𝑍 < 0 ∧ 0 < 𝐴))
6160orcd 873 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → ((𝑍 < 0 ∧ 0 < 𝐴) ∨ (0 < 𝑍𝐴 < 0)))
62 simprl 771 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → 𝑍 ∈ ℝ)
6335adantr 484 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 ∈ ℝ)
6463adantr 484 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → 𝐴 ∈ ℝ)
6562, 64mul2lt0bi 12675 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → ((𝑍 · 𝐴) < 0 ↔ ((𝑍 < 0 ∧ 0 < 𝐴) ∨ (0 < 𝑍𝐴 < 0))))
6661, 65mpbird 260 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → (𝑍 · 𝐴) < 0)
6766ex 416 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → (𝑍 · 𝐴) < 0))
68 breq1 5046 . . . . . . . . . . . . . 14 ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) < 0 ↔ 𝐵 < 0))
6968adantl 485 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → ((𝑍 · 𝐴) < 0 ↔ 𝐵 < 0))
70 nnnn0 12080 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
71 nn0nlt0 12099 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℕ0 → ¬ 𝐵 < 0)
7271pm2.21d 121 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ0 → (𝐵 < 0 → 𝐴 = 𝐵))
7370, 72syl 17 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ → (𝐵 < 0 → 𝐴 = 𝐵))
7440, 73syl 17 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℙ → (𝐵 < 0 → 𝐴 = 𝐵))
7574adantl 485 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (𝐵 < 0 → 𝐴 = 𝐵))
7675adantr 484 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → (𝐵 < 0 → 𝐴 = 𝐵))
7769, 76sylbid 243 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → ((𝑍 · 𝐴) < 0 → 𝐴 = 𝐵))
7877ex 416 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) < 0 → 𝐴 = 𝐵)))
7978com23 86 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) < 0 → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8067, 79syldc 48 . . . . . . . . 9 ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8180ex 416 . . . . . . . 8 (𝑍 ∈ ℝ → (𝑍 < 0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8256, 81sylbird 263 . . . . . . 7 (𝑍 ∈ ℝ → (0 < -𝑍 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8382adantld 494 . . . . . 6 (𝑍 ∈ ℝ → ((-𝑍 ∈ ℤ ∧ 0 < -𝑍) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8455, 83syl5bi 245 . . . . 5 (𝑍 ∈ ℝ → (-𝑍 ∈ ℕ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8584imp 410 . . . 4 ((𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8654, 85jaoi 857 . . 3 ((𝑍 ∈ ℕ0 ∨ (𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ)) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
871, 86sylbi 220 . 2 (𝑍 ∈ ℤ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
88873impib 1118 1 ((𝑍 ∈ ℤ ∧ 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wne 2935   class class class wbr 5043  cfv 6369  (class class class)co 7202  cr 10711  0cc0 10712  1c1 10713   · cmul 10717   < clt 10850  -cneg 11046  cn 11813  2c2 11868  0cn0 12073  cz 12159  cuz 12421  cprime 16209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-seq 13558  df-exp 13619  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-dvds 15797  df-prm 16210
This theorem is referenced by:  zlmodzxznm  45465
  Copyright terms: Public domain W3C validator