Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ztprmneprm Structured version   Visualization version   GIF version

Theorem ztprmneprm 44744
Description: A prime is not an integer multiple of another prime. (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
ztprmneprm ((𝑍 ∈ ℤ ∧ 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))

Proof of Theorem ztprmneprm
StepHypRef Expression
1 elznn0nn 11983 . . 3 (𝑍 ∈ ℤ ↔ (𝑍 ∈ ℕ0 ∨ (𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ)))
2 elnn0 11887 . . . . 5 (𝑍 ∈ ℕ0 ↔ (𝑍 ∈ ℕ ∨ 𝑍 = 0))
3 elnn1uz2 12313 . . . . . . 7 (𝑍 ∈ ℕ ↔ (𝑍 = 1 ∨ 𝑍 ∈ (ℤ‘2)))
4 oveq1 7142 . . . . . . . . . . . 12 (𝑍 = 1 → (𝑍 · 𝐴) = (1 · 𝐴))
54adantr 484 . . . . . . . . . . 11 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → (𝑍 · 𝐴) = (1 · 𝐴))
65eqeq1d 2800 . . . . . . . . . 10 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵 ↔ (1 · 𝐴) = 𝐵))
7 prmz 16009 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℙ → 𝐴 ∈ ℤ)
87zcnd 12076 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℙ → 𝐴 ∈ ℂ)
98mulid2d 10648 . . . . . . . . . . . . . 14 (𝐴 ∈ ℙ → (1 · 𝐴) = 𝐴)
109adantr 484 . . . . . . . . . . . . 13 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (1 · 𝐴) = 𝐴)
1110eqeq1d 2800 . . . . . . . . . . . 12 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
1211biimpd 232 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
1312adantl 485 . . . . . . . . . 10 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
146, 13sylbid 243 . . . . . . . . 9 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
1514ex 416 . . . . . . . 8 (𝑍 = 1 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
16 prmuz2 16030 . . . . . . . . . . . 12 (𝐴 ∈ ℙ → 𝐴 ∈ (ℤ‘2))
1716adantr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 ∈ (ℤ‘2))
18 nprm 16022 . . . . . . . . . . 11 ((𝑍 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (𝑍 · 𝐴) ∈ ℙ)
1917, 18sylan2 595 . . . . . . . . . 10 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ¬ (𝑍 · 𝐴) ∈ ℙ)
20 eleq1 2877 . . . . . . . . . . . . 13 ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) ∈ ℙ ↔ 𝐵 ∈ ℙ))
2120notbid 321 . . . . . . . . . . . 12 ((𝑍 · 𝐴) = 𝐵 → (¬ (𝑍 · 𝐴) ∈ ℙ ↔ ¬ 𝐵 ∈ ℙ))
22 pm2.24 124 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℙ → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2322adantl 485 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2423adantl 485 . . . . . . . . . . . . 13 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2524com12 32 . . . . . . . . . . . 12 𝐵 ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → 𝐴 = 𝐵))
2621, 25syl6bi 256 . . . . . . . . . . 11 ((𝑍 · 𝐴) = 𝐵 → (¬ (𝑍 · 𝐴) ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → 𝐴 = 𝐵)))
2726com3l 89 . . . . . . . . . 10 (¬ (𝑍 · 𝐴) ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
2819, 27mpcom 38 . . . . . . . . 9 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
2928ex 416 . . . . . . . 8 (𝑍 ∈ (ℤ‘2) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
3015, 29jaoi 854 . . . . . . 7 ((𝑍 = 1 ∨ 𝑍 ∈ (ℤ‘2)) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
313, 30sylbi 220 . . . . . 6 (𝑍 ∈ ℕ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
32 oveq1 7142 . . . . . . . . 9 (𝑍 = 0 → (𝑍 · 𝐴) = (0 · 𝐴))
3332eqeq1d 2800 . . . . . . . 8 (𝑍 = 0 → ((𝑍 · 𝐴) = 𝐵 ↔ (0 · 𝐴) = 𝐵))
34 prmnn 16008 . . . . . . . . . . . . . 14 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
3534nnred 11640 . . . . . . . . . . . . 13 (𝐴 ∈ ℙ → 𝐴 ∈ ℝ)
36 mul02lem2 10806 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
3735, 36syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℙ → (0 · 𝐴) = 0)
3837adantr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (0 · 𝐴) = 0)
3938eqeq1d 2800 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((0 · 𝐴) = 𝐵 ↔ 0 = 𝐵))
40 prmnn 16008 . . . . . . . . . . . 12 (𝐵 ∈ ℙ → 𝐵 ∈ ℕ)
41 elnnne0 11899 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ ↔ (𝐵 ∈ ℕ0𝐵 ≠ 0))
42 eqneqall 2998 . . . . . . . . . . . . . . . 16 (𝐵 = 0 → (𝐵 ≠ 0 → 𝐴 = 𝐵))
4342eqcoms 2806 . . . . . . . . . . . . . . 15 (0 = 𝐵 → (𝐵 ≠ 0 → 𝐴 = 𝐵))
4443com12 32 . . . . . . . . . . . . . 14 (𝐵 ≠ 0 → (0 = 𝐵𝐴 = 𝐵))
4544adantl 485 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0𝐵 ≠ 0) → (0 = 𝐵𝐴 = 𝐵))
4641, 45sylbi 220 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (0 = 𝐵𝐴 = 𝐵))
4740, 46syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℙ → (0 = 𝐵𝐴 = 𝐵))
4847adantl 485 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (0 = 𝐵𝐴 = 𝐵))
4939, 48sylbid 243 . . . . . . . . 9 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((0 · 𝐴) = 𝐵𝐴 = 𝐵))
5049com12 32 . . . . . . . 8 ((0 · 𝐴) = 𝐵 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 = 𝐵))
5133, 50syl6bi 256 . . . . . . 7 (𝑍 = 0 → ((𝑍 · 𝐴) = 𝐵 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 = 𝐵)))
5251com23 86 . . . . . 6 (𝑍 = 0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
5331, 52jaoi 854 . . . . 5 ((𝑍 ∈ ℕ ∨ 𝑍 = 0) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
542, 53sylbi 220 . . . 4 (𝑍 ∈ ℕ0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
55 elnnz 11979 . . . . . 6 (-𝑍 ∈ ℕ ↔ (-𝑍 ∈ ℤ ∧ 0 < -𝑍))
56 lt0neg1 11135 . . . . . . . 8 (𝑍 ∈ ℝ → (𝑍 < 0 ↔ 0 < -𝑍))
5734nngt0d 11674 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℙ → 0 < 𝐴)
5857adantr 484 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 0 < 𝐴)
59 simpr 488 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → 𝑍 < 0)
6058, 59anim12ci 616 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → (𝑍 < 0 ∧ 0 < 𝐴))
6160orcd 870 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → ((𝑍 < 0 ∧ 0 < 𝐴) ∨ (0 < 𝑍𝐴 < 0)))
62 simprl 770 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → 𝑍 ∈ ℝ)
6335adantr 484 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 ∈ ℝ)
6463adantr 484 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → 𝐴 ∈ ℝ)
6562, 64mul2lt0bi 12483 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → ((𝑍 · 𝐴) < 0 ↔ ((𝑍 < 0 ∧ 0 < 𝐴) ∨ (0 < 𝑍𝐴 < 0))))
6661, 65mpbird 260 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → (𝑍 · 𝐴) < 0)
6766ex 416 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → (𝑍 · 𝐴) < 0))
68 breq1 5033 . . . . . . . . . . . . . 14 ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) < 0 ↔ 𝐵 < 0))
6968adantl 485 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → ((𝑍 · 𝐴) < 0 ↔ 𝐵 < 0))
70 nnnn0 11892 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
71 nn0nlt0 11911 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℕ0 → ¬ 𝐵 < 0)
7271pm2.21d 121 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ0 → (𝐵 < 0 → 𝐴 = 𝐵))
7370, 72syl 17 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ → (𝐵 < 0 → 𝐴 = 𝐵))
7440, 73syl 17 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℙ → (𝐵 < 0 → 𝐴 = 𝐵))
7574adantl 485 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (𝐵 < 0 → 𝐴 = 𝐵))
7675adantr 484 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → (𝐵 < 0 → 𝐴 = 𝐵))
7769, 76sylbid 243 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → ((𝑍 · 𝐴) < 0 → 𝐴 = 𝐵))
7877ex 416 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) < 0 → 𝐴 = 𝐵)))
7978com23 86 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) < 0 → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8067, 79syldc 48 . . . . . . . . 9 ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8180ex 416 . . . . . . . 8 (𝑍 ∈ ℝ → (𝑍 < 0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8256, 81sylbird 263 . . . . . . 7 (𝑍 ∈ ℝ → (0 < -𝑍 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8382adantld 494 . . . . . 6 (𝑍 ∈ ℝ → ((-𝑍 ∈ ℤ ∧ 0 < -𝑍) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8455, 83syl5bi 245 . . . . 5 (𝑍 ∈ ℝ → (-𝑍 ∈ ℕ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8584imp 410 . . . 4 ((𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8654, 85jaoi 854 . . 3 ((𝑍 ∈ ℕ0 ∨ (𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ)) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
871, 86sylbi 220 . 2 (𝑍 ∈ ℤ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
88873impib 1113 1 ((𝑍 ∈ ℤ ∧ 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  -cneg 10860  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16006
This theorem is referenced by:  zlmodzxznm  44901
  Copyright terms: Public domain W3C validator