Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ztprmneprm Structured version   Visualization version   GIF version

Theorem ztprmneprm 45683
Description: A prime is not an integer multiple of another prime. (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
ztprmneprm ((𝑍 ∈ ℤ ∧ 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))

Proof of Theorem ztprmneprm
StepHypRef Expression
1 elznn0nn 12333 . . 3 (𝑍 ∈ ℤ ↔ (𝑍 ∈ ℕ0 ∨ (𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ)))
2 elnn0 12235 . . . . 5 (𝑍 ∈ ℕ0 ↔ (𝑍 ∈ ℕ ∨ 𝑍 = 0))
3 elnn1uz2 12665 . . . . . . 7 (𝑍 ∈ ℕ ↔ (𝑍 = 1 ∨ 𝑍 ∈ (ℤ‘2)))
4 oveq1 7282 . . . . . . . . . . . 12 (𝑍 = 1 → (𝑍 · 𝐴) = (1 · 𝐴))
54adantr 481 . . . . . . . . . . 11 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → (𝑍 · 𝐴) = (1 · 𝐴))
65eqeq1d 2740 . . . . . . . . . 10 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵 ↔ (1 · 𝐴) = 𝐵))
7 prmz 16380 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℙ → 𝐴 ∈ ℤ)
87zcnd 12427 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℙ → 𝐴 ∈ ℂ)
98mulid2d 10993 . . . . . . . . . . . . . 14 (𝐴 ∈ ℙ → (1 · 𝐴) = 𝐴)
109adantr 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (1 · 𝐴) = 𝐴)
1110eqeq1d 2740 . . . . . . . . . . . 12 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
1211biimpd 228 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
1312adantl 482 . . . . . . . . . 10 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
146, 13sylbid 239 . . . . . . . . 9 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
1514ex 413 . . . . . . . 8 (𝑍 = 1 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
16 prmuz2 16401 . . . . . . . . . . . 12 (𝐴 ∈ ℙ → 𝐴 ∈ (ℤ‘2))
1716adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 ∈ (ℤ‘2))
18 nprm 16393 . . . . . . . . . . 11 ((𝑍 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (𝑍 · 𝐴) ∈ ℙ)
1917, 18sylan2 593 . . . . . . . . . 10 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ¬ (𝑍 · 𝐴) ∈ ℙ)
20 eleq1 2826 . . . . . . . . . . . . 13 ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) ∈ ℙ ↔ 𝐵 ∈ ℙ))
2120notbid 318 . . . . . . . . . . . 12 ((𝑍 · 𝐴) = 𝐵 → (¬ (𝑍 · 𝐴) ∈ ℙ ↔ ¬ 𝐵 ∈ ℙ))
22 pm2.24 124 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℙ → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2322adantl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2423adantl 482 . . . . . . . . . . . . 13 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2524com12 32 . . . . . . . . . . . 12 𝐵 ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → 𝐴 = 𝐵))
2621, 25syl6bi 252 . . . . . . . . . . 11 ((𝑍 · 𝐴) = 𝐵 → (¬ (𝑍 · 𝐴) ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → 𝐴 = 𝐵)))
2726com3l 89 . . . . . . . . . 10 (¬ (𝑍 · 𝐴) ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
2819, 27mpcom 38 . . . . . . . . 9 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
2928ex 413 . . . . . . . 8 (𝑍 ∈ (ℤ‘2) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
3015, 29jaoi 854 . . . . . . 7 ((𝑍 = 1 ∨ 𝑍 ∈ (ℤ‘2)) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
313, 30sylbi 216 . . . . . 6 (𝑍 ∈ ℕ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
32 oveq1 7282 . . . . . . . . 9 (𝑍 = 0 → (𝑍 · 𝐴) = (0 · 𝐴))
3332eqeq1d 2740 . . . . . . . 8 (𝑍 = 0 → ((𝑍 · 𝐴) = 𝐵 ↔ (0 · 𝐴) = 𝐵))
34 prmnn 16379 . . . . . . . . . . . . . 14 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
3534nnred 11988 . . . . . . . . . . . . 13 (𝐴 ∈ ℙ → 𝐴 ∈ ℝ)
36 mul02lem2 11152 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
3735, 36syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℙ → (0 · 𝐴) = 0)
3837adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (0 · 𝐴) = 0)
3938eqeq1d 2740 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((0 · 𝐴) = 𝐵 ↔ 0 = 𝐵))
40 prmnn 16379 . . . . . . . . . . . 12 (𝐵 ∈ ℙ → 𝐵 ∈ ℕ)
41 elnnne0 12247 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ ↔ (𝐵 ∈ ℕ0𝐵 ≠ 0))
42 eqneqall 2954 . . . . . . . . . . . . . . . 16 (𝐵 = 0 → (𝐵 ≠ 0 → 𝐴 = 𝐵))
4342eqcoms 2746 . . . . . . . . . . . . . . 15 (0 = 𝐵 → (𝐵 ≠ 0 → 𝐴 = 𝐵))
4443com12 32 . . . . . . . . . . . . . 14 (𝐵 ≠ 0 → (0 = 𝐵𝐴 = 𝐵))
4544adantl 482 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0𝐵 ≠ 0) → (0 = 𝐵𝐴 = 𝐵))
4641, 45sylbi 216 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (0 = 𝐵𝐴 = 𝐵))
4740, 46syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℙ → (0 = 𝐵𝐴 = 𝐵))
4847adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (0 = 𝐵𝐴 = 𝐵))
4939, 48sylbid 239 . . . . . . . . 9 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((0 · 𝐴) = 𝐵𝐴 = 𝐵))
5049com12 32 . . . . . . . 8 ((0 · 𝐴) = 𝐵 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 = 𝐵))
5133, 50syl6bi 252 . . . . . . 7 (𝑍 = 0 → ((𝑍 · 𝐴) = 𝐵 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 = 𝐵)))
5251com23 86 . . . . . 6 (𝑍 = 0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
5331, 52jaoi 854 . . . . 5 ((𝑍 ∈ ℕ ∨ 𝑍 = 0) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
542, 53sylbi 216 . . . 4 (𝑍 ∈ ℕ0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
55 elnnz 12329 . . . . . 6 (-𝑍 ∈ ℕ ↔ (-𝑍 ∈ ℤ ∧ 0 < -𝑍))
56 lt0neg1 11481 . . . . . . . 8 (𝑍 ∈ ℝ → (𝑍 < 0 ↔ 0 < -𝑍))
5734nngt0d 12022 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℙ → 0 < 𝐴)
5857adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 0 < 𝐴)
59 simpr 485 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → 𝑍 < 0)
6058, 59anim12ci 614 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → (𝑍 < 0 ∧ 0 < 𝐴))
6160orcd 870 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → ((𝑍 < 0 ∧ 0 < 𝐴) ∨ (0 < 𝑍𝐴 < 0)))
62 simprl 768 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → 𝑍 ∈ ℝ)
6335adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 ∈ ℝ)
6463adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → 𝐴 ∈ ℝ)
6562, 64mul2lt0bi 12836 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → ((𝑍 · 𝐴) < 0 ↔ ((𝑍 < 0 ∧ 0 < 𝐴) ∨ (0 < 𝑍𝐴 < 0))))
6661, 65mpbird 256 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → (𝑍 · 𝐴) < 0)
6766ex 413 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → (𝑍 · 𝐴) < 0))
68 breq1 5077 . . . . . . . . . . . . . 14 ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) < 0 ↔ 𝐵 < 0))
6968adantl 482 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → ((𝑍 · 𝐴) < 0 ↔ 𝐵 < 0))
70 nnnn0 12240 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
71 nn0nlt0 12259 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℕ0 → ¬ 𝐵 < 0)
7271pm2.21d 121 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ0 → (𝐵 < 0 → 𝐴 = 𝐵))
7370, 72syl 17 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ → (𝐵 < 0 → 𝐴 = 𝐵))
7440, 73syl 17 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℙ → (𝐵 < 0 → 𝐴 = 𝐵))
7574adantl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (𝐵 < 0 → 𝐴 = 𝐵))
7675adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → (𝐵 < 0 → 𝐴 = 𝐵))
7769, 76sylbid 239 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → ((𝑍 · 𝐴) < 0 → 𝐴 = 𝐵))
7877ex 413 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) < 0 → 𝐴 = 𝐵)))
7978com23 86 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) < 0 → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8067, 79syldc 48 . . . . . . . . 9 ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8180ex 413 . . . . . . . 8 (𝑍 ∈ ℝ → (𝑍 < 0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8256, 81sylbird 259 . . . . . . 7 (𝑍 ∈ ℝ → (0 < -𝑍 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8382adantld 491 . . . . . 6 (𝑍 ∈ ℝ → ((-𝑍 ∈ ℤ ∧ 0 < -𝑍) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8455, 83syl5bi 241 . . . . 5 (𝑍 ∈ ℝ → (-𝑍 ∈ ℕ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8584imp 407 . . . 4 ((𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8654, 85jaoi 854 . . 3 ((𝑍 ∈ ℕ0 ∨ (𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ)) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
871, 86sylbi 216 . 2 (𝑍 ∈ ℤ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
88873impib 1115 1 ((𝑍 ∈ ℤ ∧ 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  -cneg 11206  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  cprime 16376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-prm 16377
This theorem is referenced by:  zlmodzxznm  45838
  Copyright terms: Public domain W3C validator