Step | Hyp | Ref
| Expression |
1 | | scmatid.e |
. . . . 5
⊢ 𝐸 = (Base‘𝑅) |
2 | | scmatid.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
3 | | scmatid.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐴) |
4 | | eqid 2738 |
. . . . 5
⊢
(1r‘𝐴) = (1r‘𝐴) |
5 | | eqid 2738 |
. . . . 5
⊢ (
·𝑠 ‘𝐴) = ( ·𝑠
‘𝐴) |
6 | | scmatid.s |
. . . . 5
⊢ 𝑆 = (𝑁 ScMat 𝑅) |
7 | 1, 2, 3, 4, 5, 6 | scmatscmid 21655 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑆) → ∃𝑐 ∈ 𝐸 𝑋 = (𝑐( ·𝑠
‘𝐴)(1r‘𝐴))) |
8 | 7 | 3expa 1117 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋 ∈ 𝑆) → ∃𝑐 ∈ 𝐸 𝑋 = (𝑐( ·𝑠
‘𝐴)(1r‘𝐴))) |
9 | 8 | adantrr 714 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → ∃𝑐 ∈ 𝐸 𝑋 = (𝑐( ·𝑠
‘𝐴)(1r‘𝐴))) |
10 | 1, 2, 3, 4, 5, 6 | scmatscmid 21655 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑆) → ∃𝑑 ∈ 𝐸 𝑌 = (𝑑( ·𝑠
‘𝐴)(1r‘𝐴))) |
11 | 10 | 3expia 1120 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌 ∈ 𝑆 → ∃𝑑 ∈ 𝐸 𝑌 = (𝑑( ·𝑠
‘𝐴)(1r‘𝐴)))) |
12 | | oveq12 7284 |
. . . . . . . . . . 11
⊢ ((𝑋 = (𝑐( ·𝑠
‘𝐴)(1r‘𝐴)) ∧ 𝑌 = (𝑑( ·𝑠
‘𝐴)(1r‘𝐴))) → (𝑋(+g‘𝐴)𝑌) = ((𝑐( ·𝑠
‘𝐴)(1r‘𝐴))(+g‘𝐴)(𝑑( ·𝑠
‘𝐴)(1r‘𝐴)))) |
13 | 12 | adantl 482 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) ∧ (𝑋 = (𝑐( ·𝑠
‘𝐴)(1r‘𝐴)) ∧ 𝑌 = (𝑑( ·𝑠
‘𝐴)(1r‘𝐴)))) → (𝑋(+g‘𝐴)𝑌) = ((𝑐( ·𝑠
‘𝐴)(1r‘𝐴))(+g‘𝐴)(𝑑( ·𝑠
‘𝐴)(1r‘𝐴)))) |
14 | 2 | matlmod 21578 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
15 | 14 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → 𝐴 ∈ LMod) |
16 | 2 | matsca2 21569 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
17 | 16 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Base‘𝑅) =
(Base‘(Scalar‘𝐴))) |
18 | 1, 17 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐸 =
(Base‘(Scalar‘𝐴))) |
19 | 18 | eleq2d 2824 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑐 ∈ 𝐸 ↔ 𝑐 ∈ (Base‘(Scalar‘𝐴)))) |
20 | 19 | biimpd 228 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑐 ∈ 𝐸 → 𝑐 ∈ (Base‘(Scalar‘𝐴)))) |
21 | 20 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) → (𝑐 ∈ 𝐸 → 𝑐 ∈ (Base‘(Scalar‘𝐴)))) |
22 | 21 | imp 407 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → 𝑐 ∈ (Base‘(Scalar‘𝐴))) |
23 | 18 | eleq2d 2824 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑑 ∈ 𝐸 ↔ 𝑑 ∈ (Base‘(Scalar‘𝐴)))) |
24 | 23 | biimpa 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) → 𝑑 ∈ (Base‘(Scalar‘𝐴))) |
25 | 24 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → 𝑑 ∈ (Base‘(Scalar‘𝐴))) |
26 | 2 | matring 21592 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
27 | 3, 4 | ringidcl 19807 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ Ring →
(1r‘𝐴)
∈ 𝐵) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝐴)
∈ 𝐵) |
29 | 28 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → (1r‘𝐴) ∈ 𝐵) |
30 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(+g‘𝐴) = (+g‘𝐴) |
31 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(Scalar‘𝐴) =
(Scalar‘𝐴) |
32 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) |
33 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(+g‘(Scalar‘𝐴)) =
(+g‘(Scalar‘𝐴)) |
34 | 3, 30, 31, 5, 32, 33 | lmodvsdir 20147 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ LMod ∧ (𝑐 ∈
(Base‘(Scalar‘𝐴)) ∧ 𝑑 ∈ (Base‘(Scalar‘𝐴)) ∧
(1r‘𝐴)
∈ 𝐵)) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) = ((𝑐( ·𝑠
‘𝐴)(1r‘𝐴))(+g‘𝐴)(𝑑( ·𝑠
‘𝐴)(1r‘𝐴)))) |
35 | 15, 22, 25, 29, 34 | syl13anc 1371 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) = ((𝑐( ·𝑠
‘𝐴)(1r‘𝐴))(+g‘𝐴)(𝑑( ·𝑠
‘𝐴)(1r‘𝐴)))) |
36 | 35 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → ((𝑐( ·𝑠
‘𝐴)(1r‘𝐴))(+g‘𝐴)(𝑑( ·𝑠
‘𝐴)(1r‘𝐴))) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴))) |
37 | | simpll 764 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
38 | 16 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Scalar‘𝐴) = 𝑅) |
39 | 38 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → (Scalar‘𝐴) = 𝑅) |
40 | 39 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) →
(+g‘(Scalar‘𝐴)) = (+g‘𝑅)) |
41 | 40 | oveqd 7292 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → (𝑐(+g‘(Scalar‘𝐴))𝑑) = (𝑐(+g‘𝑅)𝑑)) |
42 | | ringgrp 19788 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
43 | 42 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Grp) |
44 | 43 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → 𝑅 ∈ Grp) |
45 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → 𝑐 ∈ 𝐸) |
46 | | simplr 766 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → 𝑑 ∈ 𝐸) |
47 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(+g‘𝑅) = (+g‘𝑅) |
48 | 1, 47 | grpcl 18585 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Grp ∧ 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) → (𝑐(+g‘𝑅)𝑑) ∈ 𝐸) |
49 | 44, 45, 46, 48 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → (𝑐(+g‘𝑅)𝑑) ∈ 𝐸) |
50 | 41, 49 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → (𝑐(+g‘(Scalar‘𝐴))𝑑) ∈ 𝐸) |
51 | 1, 2, 3, 5 | matvscl 21580 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑐(+g‘(Scalar‘𝐴))𝑑) ∈ 𝐸 ∧ (1r‘𝐴) ∈ 𝐵)) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) ∈ 𝐵) |
52 | 37, 50, 29, 51 | syl12anc 834 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) ∈ 𝐵) |
53 | | oveq1 7282 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = (𝑐(+g‘(Scalar‘𝐴))𝑑) → (𝑒( ·𝑠
‘𝐴)(1r‘𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴))) |
54 | 53 | eqeq2d 2749 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = (𝑐(+g‘(Scalar‘𝐴))𝑑) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) = (𝑒( ·𝑠
‘𝐴)(1r‘𝐴)) ↔ ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)))) |
55 | 54 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) ∧ 𝑒 = (𝑐(+g‘(Scalar‘𝐴))𝑑)) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) = (𝑒( ·𝑠
‘𝐴)(1r‘𝐴)) ↔ ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)))) |
56 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴))) |
57 | 50, 55, 56 | rspcedvd 3563 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → ∃𝑒 ∈ 𝐸 ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) = (𝑒( ·𝑠
‘𝐴)(1r‘𝐴))) |
58 | 1, 2, 3, 4, 5, 6 | scmatel 21654 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) ∈ 𝑆 ↔ (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) ∈ 𝐵 ∧ ∃𝑒 ∈ 𝐸 ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) = (𝑒( ·𝑠
‘𝐴)(1r‘𝐴))))) |
59 | 58 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) ∈ 𝑆 ↔ (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) ∈ 𝐵 ∧ ∃𝑒 ∈ 𝐸 ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) = (𝑒( ·𝑠
‘𝐴)(1r‘𝐴))))) |
60 | 52, 57, 59 | mpbir2and 710 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠
‘𝐴)(1r‘𝐴)) ∈ 𝑆) |
61 | 36, 60 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → ((𝑐( ·𝑠
‘𝐴)(1r‘𝐴))(+g‘𝐴)(𝑑( ·𝑠
‘𝐴)(1r‘𝐴))) ∈ 𝑆) |
62 | 61 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) ∧ (𝑋 = (𝑐( ·𝑠
‘𝐴)(1r‘𝐴)) ∧ 𝑌 = (𝑑( ·𝑠
‘𝐴)(1r‘𝐴)))) → ((𝑐( ·𝑠
‘𝐴)(1r‘𝐴))(+g‘𝐴)(𝑑( ·𝑠
‘𝐴)(1r‘𝐴))) ∈ 𝑆) |
63 | 13, 62 | eqeltrd 2839 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) ∧ (𝑋 = (𝑐( ·𝑠
‘𝐴)(1r‘𝐴)) ∧ 𝑌 = (𝑑( ·𝑠
‘𝐴)(1r‘𝐴)))) → (𝑋(+g‘𝐴)𝑌) ∈ 𝑆) |
64 | 63 | exp32 421 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) → (𝑋 = (𝑐( ·𝑠
‘𝐴)(1r‘𝐴)) → (𝑌 = (𝑑( ·𝑠
‘𝐴)(1r‘𝐴)) → (𝑋(+g‘𝐴)𝑌) ∈ 𝑆))) |
65 | 64 | rexlimdva 3213 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) → (∃𝑐 ∈ 𝐸 𝑋 = (𝑐( ·𝑠
‘𝐴)(1r‘𝐴)) → (𝑌 = (𝑑( ·𝑠
‘𝐴)(1r‘𝐴)) → (𝑋(+g‘𝐴)𝑌) ∈ 𝑆))) |
66 | 65 | com23 86 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) → (𝑌 = (𝑑( ·𝑠
‘𝐴)(1r‘𝐴)) → (∃𝑐 ∈ 𝐸 𝑋 = (𝑐( ·𝑠
‘𝐴)(1r‘𝐴)) → (𝑋(+g‘𝐴)𝑌) ∈ 𝑆))) |
67 | 66 | rexlimdva 3213 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(∃𝑑 ∈ 𝐸 𝑌 = (𝑑( ·𝑠
‘𝐴)(1r‘𝐴)) → (∃𝑐 ∈ 𝐸 𝑋 = (𝑐( ·𝑠
‘𝐴)(1r‘𝐴)) → (𝑋(+g‘𝐴)𝑌) ∈ 𝑆))) |
68 | 11, 67 | syldc 48 |
. . . 4
⊢ (𝑌 ∈ 𝑆 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐 ∈ 𝐸 𝑋 = (𝑐( ·𝑠
‘𝐴)(1r‘𝐴)) → (𝑋(+g‘𝐴)𝑌) ∈ 𝑆))) |
69 | 68 | adantl 482 |
. . 3
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐 ∈ 𝐸 𝑋 = (𝑐( ·𝑠
‘𝐴)(1r‘𝐴)) → (𝑋(+g‘𝐴)𝑌) ∈ 𝑆))) |
70 | 69 | impcom 408 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (∃𝑐 ∈ 𝐸 𝑋 = (𝑐( ·𝑠
‘𝐴)(1r‘𝐴)) → (𝑋(+g‘𝐴)𝑌) ∈ 𝑆)) |
71 | 9, 70 | mpd 15 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐴)𝑌) ∈ 𝑆) |