MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmataddcl Structured version   Visualization version   GIF version

Theorem scmataddcl 21041
Description: The sum of two scalar matrices is a scalar matrix. (Contributed by AV, 25-Dec-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmataddcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)

Proof of Theorem scmataddcl
Dummy variables 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatid.e . . . . 5 𝐸 = (Base‘𝑅)
2 scmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 scmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 eqid 2825 . . . . 5 (1r𝐴) = (1r𝐴)
5 eqid 2825 . . . . 5 ( ·𝑠𝐴) = ( ·𝑠𝐴)
6 scmatid.s . . . . 5 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatscmid 21031 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝑆) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
873expa 1112 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝑆) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
98adantrr 713 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
101, 2, 3, 4, 5, 6scmatscmid 21031 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝑆) → ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))
11103expia 1115 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝑆 → ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))))
12 oveq12 7160 . . . . . . . . . . 11 ((𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → (𝑋(+g𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
1312adantl 482 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → (𝑋(+g𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
142matlmod 20954 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
1514ad2antrr 722 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝐴 ∈ LMod)
162matsca2 20945 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴))
1716fveq2d 6670 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘(Scalar‘𝐴)))
181, 17syl5eq 2872 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐸 = (Base‘(Scalar‘𝐴)))
1918eleq2d 2902 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2019biimpd 230 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2120adantr 481 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2221imp 407 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑐 ∈ (Base‘(Scalar‘𝐴)))
2318eleq2d 2902 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑑𝐸𝑑 ∈ (Base‘(Scalar‘𝐴))))
2423biimpa 477 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → 𝑑 ∈ (Base‘(Scalar‘𝐴)))
2524adantr 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑑 ∈ (Base‘(Scalar‘𝐴)))
262matring 20968 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
273, 4ringidcl 19240 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
2826, 27syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐵)
2928ad2antrr 722 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (1r𝐴) ∈ 𝐵)
30 eqid 2825 . . . . . . . . . . . . . . 15 (+g𝐴) = (+g𝐴)
31 eqid 2825 . . . . . . . . . . . . . . 15 (Scalar‘𝐴) = (Scalar‘𝐴)
32 eqid 2825 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
33 eqid 2825 . . . . . . . . . . . . . . 15 (+g‘(Scalar‘𝐴)) = (+g‘(Scalar‘𝐴))
343, 30, 31, 5, 32, 33lmodvsdir 19580 . . . . . . . . . . . . . 14 ((𝐴 ∈ LMod ∧ (𝑐 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑑 ∈ (Base‘(Scalar‘𝐴)) ∧ (1r𝐴) ∈ 𝐵)) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
3515, 22, 25, 29, 34syl13anc 1366 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
3635eqcomd 2831 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
37 simpll 763 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3816eqcomd 2831 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝐴) = 𝑅)
3938ad2antrr 722 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (Scalar‘𝐴) = 𝑅)
4039fveq2d 6670 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (+g‘(Scalar‘𝐴)) = (+g𝑅))
4140oveqd 7168 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(+g‘(Scalar‘𝐴))𝑑) = (𝑐(+g𝑅)𝑑))
42 ringgrp 19224 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4342adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Grp)
4443ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑅 ∈ Grp)
45 simpr 485 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑐𝐸)
46 simplr 765 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑑𝐸)
47 eqid 2825 . . . . . . . . . . . . . . . . 17 (+g𝑅) = (+g𝑅)
481, 47grpcl 18043 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Grp ∧ 𝑐𝐸𝑑𝐸) → (𝑐(+g𝑅)𝑑) ∈ 𝐸)
4944, 45, 46, 48syl3anc 1365 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(+g𝑅)𝑑) ∈ 𝐸)
5041, 49eqeltrd 2917 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(+g‘(Scalar‘𝐴))𝑑) ∈ 𝐸)
511, 2, 3, 5matvscl 20956 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑐(+g‘(Scalar‘𝐴))𝑑) ∈ 𝐸 ∧ (1r𝐴) ∈ 𝐵)) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
5237, 50, 29, 51syl12anc 834 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
53 oveq1 7158 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑐(+g‘(Scalar‘𝐴))𝑑) → (𝑒( ·𝑠𝐴)(1r𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
5453eqeq2d 2836 . . . . . . . . . . . . . . 15 (𝑒 = (𝑐(+g‘(Scalar‘𝐴))𝑑) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴))))
5554adantl 482 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ 𝑒 = (𝑐(+g‘(Scalar‘𝐴))𝑑)) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴))))
56 eqidd 2826 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
5750, 55, 56rspcedvd 3629 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ∃𝑒𝐸 ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))
581, 2, 3, 4, 5, 6scmatel 21030 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
5958ad2antrr 722 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
6052, 57, 59mpbir2and 709 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)
6136, 60eqeltrd 2917 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
6261adantr 481 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
6313, 62eqeltrd 2917 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)
6463exp32 421 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6564rexlimdva 3288 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6665com23 86 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6766rexlimdva 3288 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6811, 67syldc 48 . . . 4 (𝑌𝑆 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6968adantl 482 . . 3 ((𝑋𝑆𝑌𝑆) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
7069impcom 408 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆))
719, 70mpd 15 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wrex 3143  cfv 6351  (class class class)co 7151  Fincfn 8501  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  Grpcgrp 18035  1rcur 19173  Ringcrg 19219  LModclmod 19556   Mat cmat 20932   ScMat cscmat 21014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-ot 4572  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12886  df-fzo 13027  df-seq 13363  df-hash 13684  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-mhm 17946  df-submnd 17947  df-grp 18038  df-minusg 18039  df-sbg 18040  df-mulg 18157  df-subg 18208  df-ghm 18288  df-cntz 18379  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-subrg 19455  df-lmod 19558  df-lss 19626  df-sra 19866  df-rgmod 19867  df-dsmm 20792  df-frlm 20807  df-mamu 20911  df-mat 20933  df-scmat 21016
This theorem is referenced by:  scmatlss  21050
  Copyright terms: Public domain W3C validator