MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmataddcl Structured version   Visualization version   GIF version

Theorem scmataddcl 22429
Description: The sum of two scalar matrices is a scalar matrix. (Contributed by AV, 25-Dec-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmataddcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)

Proof of Theorem scmataddcl
Dummy variables 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatid.e . . . . 5 𝐸 = (Base‘𝑅)
2 scmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 scmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 eqid 2731 . . . . 5 (1r𝐴) = (1r𝐴)
5 eqid 2731 . . . . 5 ( ·𝑠𝐴) = ( ·𝑠𝐴)
6 scmatid.s . . . . 5 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatscmid 22419 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝑆) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
873expa 1118 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝑆) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
98adantrr 717 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
101, 2, 3, 4, 5, 6scmatscmid 22419 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝑆) → ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))
11103expia 1121 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝑆 → ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))))
12 oveq12 7355 . . . . . . . . . . 11 ((𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → (𝑋(+g𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
1312adantl 481 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → (𝑋(+g𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
142matlmod 22342 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
1514ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝐴 ∈ LMod)
162matsca2 22333 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴))
1716fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘(Scalar‘𝐴)))
181, 17eqtrid 2778 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐸 = (Base‘(Scalar‘𝐴)))
1918eleq2d 2817 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2019biimpd 229 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2120adantr 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2221imp 406 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑐 ∈ (Base‘(Scalar‘𝐴)))
2318eleq2d 2817 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑑𝐸𝑑 ∈ (Base‘(Scalar‘𝐴))))
2423biimpa 476 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → 𝑑 ∈ (Base‘(Scalar‘𝐴)))
2524adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑑 ∈ (Base‘(Scalar‘𝐴)))
262matring 22356 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
273, 4ringidcl 20181 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
2826, 27syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐵)
2928ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (1r𝐴) ∈ 𝐵)
30 eqid 2731 . . . . . . . . . . . . . . 15 (+g𝐴) = (+g𝐴)
31 eqid 2731 . . . . . . . . . . . . . . 15 (Scalar‘𝐴) = (Scalar‘𝐴)
32 eqid 2731 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
33 eqid 2731 . . . . . . . . . . . . . . 15 (+g‘(Scalar‘𝐴)) = (+g‘(Scalar‘𝐴))
343, 30, 31, 5, 32, 33lmodvsdir 20817 . . . . . . . . . . . . . 14 ((𝐴 ∈ LMod ∧ (𝑐 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑑 ∈ (Base‘(Scalar‘𝐴)) ∧ (1r𝐴) ∈ 𝐵)) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
3515, 22, 25, 29, 34syl13anc 1374 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
3635eqcomd 2737 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
37 simpll 766 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3816eqcomd 2737 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝐴) = 𝑅)
3938ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (Scalar‘𝐴) = 𝑅)
4039fveq2d 6826 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (+g‘(Scalar‘𝐴)) = (+g𝑅))
4140oveqd 7363 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(+g‘(Scalar‘𝐴))𝑑) = (𝑐(+g𝑅)𝑑))
42 ringgrp 20154 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4342adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Grp)
4443ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑅 ∈ Grp)
45 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑐𝐸)
46 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑑𝐸)
47 eqid 2731 . . . . . . . . . . . . . . . . 17 (+g𝑅) = (+g𝑅)
481, 47grpcl 18851 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Grp ∧ 𝑐𝐸𝑑𝐸) → (𝑐(+g𝑅)𝑑) ∈ 𝐸)
4944, 45, 46, 48syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(+g𝑅)𝑑) ∈ 𝐸)
5041, 49eqeltrd 2831 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(+g‘(Scalar‘𝐴))𝑑) ∈ 𝐸)
511, 2, 3, 5matvscl 22344 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑐(+g‘(Scalar‘𝐴))𝑑) ∈ 𝐸 ∧ (1r𝐴) ∈ 𝐵)) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
5237, 50, 29, 51syl12anc 836 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
53 oveq1 7353 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑐(+g‘(Scalar‘𝐴))𝑑) → (𝑒( ·𝑠𝐴)(1r𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
5453eqeq2d 2742 . . . . . . . . . . . . . . 15 (𝑒 = (𝑐(+g‘(Scalar‘𝐴))𝑑) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴))))
5554adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ 𝑒 = (𝑐(+g‘(Scalar‘𝐴))𝑑)) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴))))
56 eqidd 2732 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
5750, 55, 56rspcedvd 3579 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ∃𝑒𝐸 ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))
581, 2, 3, 4, 5, 6scmatel 22418 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
5958ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
6052, 57, 59mpbir2and 713 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)
6136, 60eqeltrd 2831 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
6261adantr 480 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
6313, 62eqeltrd 2831 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)
6463exp32 420 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6564rexlimdva 3133 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6665com23 86 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6766rexlimdva 3133 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6811, 67syldc 48 . . . 4 (𝑌𝑆 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6968adantl 481 . . 3 ((𝑋𝑆𝑌𝑆) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
7069impcom 407 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆))
719, 70mpd 15 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  cfv 6481  (class class class)co 7346  Fincfn 8869  Basecbs 17117  +gcplusg 17158  Scalarcsca 17161   ·𝑠 cvsca 17162  0gc0g 17340  Grpcgrp 18843  1rcur 20097  Ringcrg 20149  LModclmod 20791   Mat cmat 22320   ScMat cscmat 22402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-ghm 19123  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrg 20483  df-lmod 20793  df-lss 20863  df-sra 21105  df-rgmod 21106  df-dsmm 21667  df-frlm 21682  df-mamu 22304  df-mat 22321  df-scmat 22404
This theorem is referenced by:  scmatlss  22438
  Copyright terms: Public domain W3C validator