MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmataddcl Structured version   Visualization version   GIF version

Theorem scmataddcl 20599
Description: The sum of two scalar matrices is a scalar matrix. (Contributed by AV, 25-Dec-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmataddcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)

Proof of Theorem scmataddcl
Dummy variables 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatid.e . . . . 5 𝐸 = (Base‘𝑅)
2 scmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 scmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 eqid 2765 . . . . 5 (1r𝐴) = (1r𝐴)
5 eqid 2765 . . . . 5 ( ·𝑠𝐴) = ( ·𝑠𝐴)
6 scmatid.s . . . . 5 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatscmid 20589 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝑆) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
873expa 1147 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝑆) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
98adantrr 708 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
101, 2, 3, 4, 5, 6scmatscmid 20589 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝑆) → ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))
11103expia 1150 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝑆 → ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))))
12 oveq12 6851 . . . . . . . . . . 11 ((𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → (𝑋(+g𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
1312adantl 473 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → (𝑋(+g𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
142matlmod 20511 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
1514ad2antrr 717 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝐴 ∈ LMod)
162matsca2 20502 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴))
1716fveq2d 6379 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘(Scalar‘𝐴)))
181, 17syl5eq 2811 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐸 = (Base‘(Scalar‘𝐴)))
1918eleq2d 2830 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2019biimpd 220 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2120adantr 472 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2221imp 395 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑐 ∈ (Base‘(Scalar‘𝐴)))
2318eleq2d 2830 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑑𝐸𝑑 ∈ (Base‘(Scalar‘𝐴))))
2423biimpa 468 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → 𝑑 ∈ (Base‘(Scalar‘𝐴)))
2524adantr 472 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑑 ∈ (Base‘(Scalar‘𝐴)))
262matring 20525 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
273, 4ringidcl 18835 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
2826, 27syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐵)
2928ad2antrr 717 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (1r𝐴) ∈ 𝐵)
30 eqid 2765 . . . . . . . . . . . . . . 15 (+g𝐴) = (+g𝐴)
31 eqid 2765 . . . . . . . . . . . . . . 15 (Scalar‘𝐴) = (Scalar‘𝐴)
32 eqid 2765 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
33 eqid 2765 . . . . . . . . . . . . . . 15 (+g‘(Scalar‘𝐴)) = (+g‘(Scalar‘𝐴))
343, 30, 31, 5, 32, 33lmodvsdir 19156 . . . . . . . . . . . . . 14 ((𝐴 ∈ LMod ∧ (𝑐 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑑 ∈ (Base‘(Scalar‘𝐴)) ∧ (1r𝐴) ∈ 𝐵)) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
3515, 22, 25, 29, 34syl13anc 1491 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
3635eqcomd 2771 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
37 simpll 783 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3816eqcomd 2771 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝐴) = 𝑅)
3938ad2antrr 717 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (Scalar‘𝐴) = 𝑅)
4039fveq2d 6379 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (+g‘(Scalar‘𝐴)) = (+g𝑅))
4140oveqd 6859 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(+g‘(Scalar‘𝐴))𝑑) = (𝑐(+g𝑅)𝑑))
42 ringgrp 18819 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4342adantl 473 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Grp)
4443ad2antrr 717 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑅 ∈ Grp)
45 simpr 477 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑐𝐸)
46 simplr 785 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑑𝐸)
47 eqid 2765 . . . . . . . . . . . . . . . . 17 (+g𝑅) = (+g𝑅)
481, 47grpcl 17699 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Grp ∧ 𝑐𝐸𝑑𝐸) → (𝑐(+g𝑅)𝑑) ∈ 𝐸)
4944, 45, 46, 48syl3anc 1490 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(+g𝑅)𝑑) ∈ 𝐸)
5041, 49eqeltrd 2844 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(+g‘(Scalar‘𝐴))𝑑) ∈ 𝐸)
511, 2, 3, 5matvscl 20513 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑐(+g‘(Scalar‘𝐴))𝑑) ∈ 𝐸 ∧ (1r𝐴) ∈ 𝐵)) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
5237, 50, 29, 51syl12anc 865 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
53 oveq1 6849 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑐(+g‘(Scalar‘𝐴))𝑑) → (𝑒( ·𝑠𝐴)(1r𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
5453eqeq2d 2775 . . . . . . . . . . . . . . 15 (𝑒 = (𝑐(+g‘(Scalar‘𝐴))𝑑) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴))))
5554adantl 473 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ 𝑒 = (𝑐(+g‘(Scalar‘𝐴))𝑑)) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴))))
56 eqidd 2766 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
5750, 55, 56rspcedvd 3468 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ∃𝑒𝐸 ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))
581, 2, 3, 4, 5, 6scmatel 20588 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
5958ad2antrr 717 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
6052, 57, 59mpbir2and 704 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(+g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)
6136, 60eqeltrd 2844 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
6261adantr 472 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → ((𝑐( ·𝑠𝐴)(1r𝐴))(+g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
6313, 62eqeltrd 2844 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)
6463exp32 411 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6564rexlimdva 3178 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6665com23 86 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6766rexlimdva 3178 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6811, 67syldc 48 . . . 4 (𝑌𝑆 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
6968adantl 473 . . 3 ((𝑋𝑆𝑌𝑆) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)))
7069impcom 396 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆))
719, 70mpd 15 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐴)𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wrex 3056  cfv 6068  (class class class)co 6842  Fincfn 8160  Basecbs 16132  +gcplusg 16216  Scalarcsca 16219   ·𝑠 cvsca 16220  0gc0g 16368  Grpcgrp 17691  1rcur 18768  Ringcrg 18814  LModclmod 19132   Mat cmat 20489   ScMat cscmat 20572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-ot 4343  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-hom 16240  df-cco 16241  df-0g 16370  df-gsum 16371  df-prds 16376  df-pws 16378  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-mhm 17603  df-submnd 17604  df-grp 17694  df-minusg 17695  df-sbg 17696  df-mulg 17810  df-subg 17857  df-ghm 17924  df-cntz 18015  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-subrg 19047  df-lmod 19134  df-lss 19202  df-sra 19446  df-rgmod 19447  df-dsmm 20352  df-frlm 20367  df-mamu 20466  df-mat 20490  df-scmat 20574
This theorem is referenced by:  scmatlss  20608
  Copyright terms: Public domain W3C validator