MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmataddcl Structured version   Visualization version   GIF version

Theorem scmataddcl 22436
Description: The sum of two scalar matrices is a scalar matrix. (Contributed by AV, 25-Dec-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐡 = (Baseβ€˜π΄)
scmatid.e 𝐸 = (Baseβ€˜π‘…)
scmatid.0 0 = (0gβ€˜π‘…)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmataddcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆)) β†’ (𝑋(+gβ€˜π΄)π‘Œ) ∈ 𝑆)

Proof of Theorem scmataddcl
Dummy variables 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatid.e . . . . 5 𝐸 = (Baseβ€˜π‘…)
2 scmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 scmatid.b . . . . 5 𝐡 = (Baseβ€˜π΄)
4 eqid 2725 . . . . 5 (1rβ€˜π΄) = (1rβ€˜π΄)
5 eqid 2725 . . . . 5 ( ·𝑠 β€˜π΄) = ( ·𝑠 β€˜π΄)
6 scmatid.s . . . . 5 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatscmid 22426 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑆) β†’ βˆƒπ‘ ∈ 𝐸 𝑋 = (𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄)))
873expa 1115 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋 ∈ 𝑆) β†’ βˆƒπ‘ ∈ 𝐸 𝑋 = (𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄)))
98adantrr 715 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆)) β†’ βˆƒπ‘ ∈ 𝐸 𝑋 = (𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄)))
101, 2, 3, 4, 5, 6scmatscmid 22426 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ π‘Œ ∈ 𝑆) β†’ βˆƒπ‘‘ ∈ 𝐸 π‘Œ = (𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄)))
11103expia 1118 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (π‘Œ ∈ 𝑆 β†’ βˆƒπ‘‘ ∈ 𝐸 π‘Œ = (𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄))))
12 oveq12 7425 . . . . . . . . . . 11 ((𝑋 = (𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄)) ∧ π‘Œ = (𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄))) β†’ (𝑋(+gβ€˜π΄)π‘Œ) = ((𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄))(+gβ€˜π΄)(𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄))))
1312adantl 480 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) ∧ (𝑋 = (𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄)) ∧ π‘Œ = (𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄)))) β†’ (𝑋(+gβ€˜π΄)π‘Œ) = ((𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄))(+gβ€˜π΄)(𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄))))
142matlmod 22349 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝐴 ∈ LMod)
1514ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ 𝐴 ∈ LMod)
162matsca2 22340 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝑅 = (Scalarβ€˜π΄))
1716fveq2d 6896 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (Baseβ€˜π‘…) = (Baseβ€˜(Scalarβ€˜π΄)))
181, 17eqtrid 2777 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝐸 = (Baseβ€˜(Scalarβ€˜π΄)))
1918eleq2d 2811 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (𝑐 ∈ 𝐸 ↔ 𝑐 ∈ (Baseβ€˜(Scalarβ€˜π΄))))
2019biimpd 228 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (𝑐 ∈ 𝐸 β†’ 𝑐 ∈ (Baseβ€˜(Scalarβ€˜π΄))))
2120adantr 479 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) β†’ (𝑐 ∈ 𝐸 β†’ 𝑐 ∈ (Baseβ€˜(Scalarβ€˜π΄))))
2221imp 405 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ 𝑐 ∈ (Baseβ€˜(Scalarβ€˜π΄)))
2318eleq2d 2811 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (𝑑 ∈ 𝐸 ↔ 𝑑 ∈ (Baseβ€˜(Scalarβ€˜π΄))))
2423biimpa 475 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) β†’ 𝑑 ∈ (Baseβ€˜(Scalarβ€˜π΄)))
2524adantr 479 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ 𝑑 ∈ (Baseβ€˜(Scalarβ€˜π΄)))
262matring 22363 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝐴 ∈ Ring)
273, 4ringidcl 20206 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Ring β†’ (1rβ€˜π΄) ∈ 𝐡)
2826, 27syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (1rβ€˜π΄) ∈ 𝐡)
2928ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ (1rβ€˜π΄) ∈ 𝐡)
30 eqid 2725 . . . . . . . . . . . . . . 15 (+gβ€˜π΄) = (+gβ€˜π΄)
31 eqid 2725 . . . . . . . . . . . . . . 15 (Scalarβ€˜π΄) = (Scalarβ€˜π΄)
32 eqid 2725 . . . . . . . . . . . . . . 15 (Baseβ€˜(Scalarβ€˜π΄)) = (Baseβ€˜(Scalarβ€˜π΄))
33 eqid 2725 . . . . . . . . . . . . . . 15 (+gβ€˜(Scalarβ€˜π΄)) = (+gβ€˜(Scalarβ€˜π΄))
343, 30, 31, 5, 32, 33lmodvsdir 20773 . . . . . . . . . . . . . 14 ((𝐴 ∈ LMod ∧ (𝑐 ∈ (Baseβ€˜(Scalarβ€˜π΄)) ∧ 𝑑 ∈ (Baseβ€˜(Scalarβ€˜π΄)) ∧ (1rβ€˜π΄) ∈ 𝐡)) β†’ ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) = ((𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄))(+gβ€˜π΄)(𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄))))
3515, 22, 25, 29, 34syl13anc 1369 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) = ((𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄))(+gβ€˜π΄)(𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄))))
3635eqcomd 2731 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ ((𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄))(+gβ€˜π΄)(𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄))) = ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)))
37 simpll 765 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3816eqcomd 2731 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (Scalarβ€˜π΄) = 𝑅)
3938ad2antrr 724 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ (Scalarβ€˜π΄) = 𝑅)
4039fveq2d 6896 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ (+gβ€˜(Scalarβ€˜π΄)) = (+gβ€˜π‘…))
4140oveqd 7433 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ (𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑) = (𝑐(+gβ€˜π‘…)𝑑))
42 ringgrp 20182 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring β†’ 𝑅 ∈ Grp)
4342adantl 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝑅 ∈ Grp)
4443ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ 𝑅 ∈ Grp)
45 simpr 483 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ 𝑐 ∈ 𝐸)
46 simplr 767 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ 𝑑 ∈ 𝐸)
47 eqid 2725 . . . . . . . . . . . . . . . . 17 (+gβ€˜π‘…) = (+gβ€˜π‘…)
481, 47grpcl 18902 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Grp ∧ 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑐(+gβ€˜π‘…)𝑑) ∈ 𝐸)
4944, 45, 46, 48syl3anc 1368 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ (𝑐(+gβ€˜π‘…)𝑑) ∈ 𝐸)
5041, 49eqeltrd 2825 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ (𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑) ∈ 𝐸)
511, 2, 3, 5matvscl 22351 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑) ∈ 𝐸 ∧ (1rβ€˜π΄) ∈ 𝐡)) β†’ ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) ∈ 𝐡)
5237, 50, 29, 51syl12anc 835 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) ∈ 𝐡)
53 oveq1 7423 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑) β†’ (𝑒( ·𝑠 β€˜π΄)(1rβ€˜π΄)) = ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)))
5453eqeq2d 2736 . . . . . . . . . . . . . . 15 (𝑒 = (𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑) β†’ (((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) = (𝑒( ·𝑠 β€˜π΄)(1rβ€˜π΄)) ↔ ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) = ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄))))
5554adantl 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) ∧ 𝑒 = (𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)) β†’ (((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) = (𝑒( ·𝑠 β€˜π΄)(1rβ€˜π΄)) ↔ ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) = ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄))))
56 eqidd 2726 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) = ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)))
5750, 55, 56rspcedvd 3603 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ βˆƒπ‘’ ∈ 𝐸 ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) = (𝑒( ·𝑠 β€˜π΄)(1rβ€˜π΄)))
581, 2, 3, 4, 5, 6scmatel 22425 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) ∈ 𝑆 ↔ (((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) ∈ 𝐡 ∧ βˆƒπ‘’ ∈ 𝐸 ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) = (𝑒( ·𝑠 β€˜π΄)(1rβ€˜π΄)))))
5958ad2antrr 724 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ (((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) ∈ 𝑆 ↔ (((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) ∈ 𝐡 ∧ βˆƒπ‘’ ∈ 𝐸 ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) = (𝑒( ·𝑠 β€˜π΄)(1rβ€˜π΄)))))
6052, 57, 59mpbir2and 711 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ ((𝑐(+gβ€˜(Scalarβ€˜π΄))𝑑)( ·𝑠 β€˜π΄)(1rβ€˜π΄)) ∈ 𝑆)
6136, 60eqeltrd 2825 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ ((𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄))(+gβ€˜π΄)(𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄))) ∈ 𝑆)
6261adantr 479 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) ∧ (𝑋 = (𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄)) ∧ π‘Œ = (𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄)))) β†’ ((𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄))(+gβ€˜π΄)(𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄))) ∈ 𝑆)
6313, 62eqeltrd 2825 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) ∧ (𝑋 = (𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄)) ∧ π‘Œ = (𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄)))) β†’ (𝑋(+gβ€˜π΄)π‘Œ) ∈ 𝑆)
6463exp32 419 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) ∧ 𝑐 ∈ 𝐸) β†’ (𝑋 = (𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄)) β†’ (π‘Œ = (𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄)) β†’ (𝑋(+gβ€˜π΄)π‘Œ) ∈ 𝑆)))
6564rexlimdva 3145 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) β†’ (βˆƒπ‘ ∈ 𝐸 𝑋 = (𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄)) β†’ (π‘Œ = (𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄)) β†’ (𝑋(+gβ€˜π΄)π‘Œ) ∈ 𝑆)))
6665com23 86 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑 ∈ 𝐸) β†’ (π‘Œ = (𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄)) β†’ (βˆƒπ‘ ∈ 𝐸 𝑋 = (𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄)) β†’ (𝑋(+gβ€˜π΄)π‘Œ) ∈ 𝑆)))
6766rexlimdva 3145 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (βˆƒπ‘‘ ∈ 𝐸 π‘Œ = (𝑑( ·𝑠 β€˜π΄)(1rβ€˜π΄)) β†’ (βˆƒπ‘ ∈ 𝐸 𝑋 = (𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄)) β†’ (𝑋(+gβ€˜π΄)π‘Œ) ∈ 𝑆)))
6811, 67syldc 48 . . . 4 (π‘Œ ∈ 𝑆 β†’ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (βˆƒπ‘ ∈ 𝐸 𝑋 = (𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄)) β†’ (𝑋(+gβ€˜π΄)π‘Œ) ∈ 𝑆)))
6968adantl 480 . . 3 ((𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆) β†’ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (βˆƒπ‘ ∈ 𝐸 𝑋 = (𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄)) β†’ (𝑋(+gβ€˜π΄)π‘Œ) ∈ 𝑆)))
7069impcom 406 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆)) β†’ (βˆƒπ‘ ∈ 𝐸 𝑋 = (𝑐( ·𝑠 β€˜π΄)(1rβ€˜π΄)) β†’ (𝑋(+gβ€˜π΄)π‘Œ) ∈ 𝑆))
719, 70mpd 15 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆)) β†’ (𝑋(+gβ€˜π΄)π‘Œ) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3060  β€˜cfv 6543  (class class class)co 7416  Fincfn 8962  Basecbs 17179  +gcplusg 17232  Scalarcsca 17235   ·𝑠 cvsca 17236  0gc0g 17420  Grpcgrp 18894  1rcur 20125  Ringcrg 20177  LModclmod 20747   Mat cmat 22325   ScMat cscmat 22409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7991  df-2nd 7992  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-sup 9465  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-fz 13517  df-fzo 13660  df-seq 13999  df-hash 14322  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-hom 17256  df-cco 17257  df-0g 17422  df-gsum 17423  df-prds 17428  df-pws 17430  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-mhm 18739  df-submnd 18740  df-grp 18897  df-minusg 18898  df-sbg 18899  df-mulg 19028  df-subg 19082  df-ghm 19172  df-cntz 19272  df-cmn 19741  df-abl 19742  df-mgp 20079  df-rng 20097  df-ur 20126  df-ring 20179  df-subrg 20512  df-lmod 20749  df-lss 20820  df-sra 21062  df-rgmod 21063  df-dsmm 21670  df-frlm 21685  df-mamu 22309  df-mat 22326  df-scmat 22411
This theorem is referenced by:  scmatlss  22445
  Copyright terms: Public domain W3C validator