Step | Hyp | Ref
| Expression |
1 | | scmatid.e |
. . . . 5
β’ πΈ = (Baseβπ
) |
2 | | scmatid.a |
. . . . 5
β’ π΄ = (π Mat π
) |
3 | | scmatid.b |
. . . . 5
β’ π΅ = (Baseβπ΄) |
4 | | eqid 2733 |
. . . . 5
β’
(1rβπ΄) = (1rβπ΄) |
5 | | eqid 2733 |
. . . . 5
β’ (
Β·π βπ΄) = ( Β·π
βπ΄) |
6 | | scmatid.s |
. . . . 5
β’ π = (π ScMat π
) |
7 | 1, 2, 3, 4, 5, 6 | scmatscmid 21878 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ π β π) β βπ β πΈ π = (π( Β·π
βπ΄)(1rβπ΄))) |
8 | 7 | 3expa 1119 |
. . 3
β’ (((π β Fin β§ π
β Ring) β§ π β π) β βπ β πΈ π = (π( Β·π
βπ΄)(1rβπ΄))) |
9 | 8 | adantrr 716 |
. 2
β’ (((π β Fin β§ π
β Ring) β§ (π β π β§ π β π)) β βπ β πΈ π = (π( Β·π
βπ΄)(1rβπ΄))) |
10 | 1, 2, 3, 4, 5, 6 | scmatscmid 21878 |
. . . . . 6
β’ ((π β Fin β§ π
β Ring β§ π β π) β βπ β πΈ π = (π( Β·π
βπ΄)(1rβπ΄))) |
11 | 10 | 3expia 1122 |
. . . . 5
β’ ((π β Fin β§ π
β Ring) β (π β π β βπ β πΈ π = (π( Β·π
βπ΄)(1rβπ΄)))) |
12 | | oveq12 7370 |
. . . . . . . . . . 11
β’ ((π = (π( Β·π
βπ΄)(1rβπ΄)) β§ π = (π( Β·π
βπ΄)(1rβπ΄))) β (π(+gβπ΄)π) = ((π( Β·π
βπ΄)(1rβπ΄))(+gβπ΄)(π( Β·π
βπ΄)(1rβπ΄)))) |
13 | 12 | adantl 483 |
. . . . . . . . . 10
β’
(((((π β Fin
β§ π
β Ring) β§
π β πΈ) β§ π β πΈ) β§ (π = (π( Β·π
βπ΄)(1rβπ΄)) β§ π = (π( Β·π
βπ΄)(1rβπ΄)))) β (π(+gβπ΄)π) = ((π( Β·π
βπ΄)(1rβπ΄))(+gβπ΄)(π( Β·π
βπ΄)(1rβπ΄)))) |
14 | 2 | matlmod 21801 |
. . . . . . . . . . . . . . 15
β’ ((π β Fin β§ π
β Ring) β π΄ β LMod) |
15 | 14 | ad2antrr 725 |
. . . . . . . . . . . . . 14
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β π΄ β LMod) |
16 | 2 | matsca2 21792 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β Fin β§ π
β Ring) β π
= (Scalarβπ΄)) |
17 | 16 | fveq2d 6850 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β Fin β§ π
β Ring) β
(Baseβπ
) =
(Baseβ(Scalarβπ΄))) |
18 | 1, 17 | eqtrid 2785 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β Fin β§ π
β Ring) β πΈ =
(Baseβ(Scalarβπ΄))) |
19 | 18 | eleq2d 2820 |
. . . . . . . . . . . . . . . . 17
β’ ((π β Fin β§ π
β Ring) β (π β πΈ β π β (Baseβ(Scalarβπ΄)))) |
20 | 19 | biimpd 228 |
. . . . . . . . . . . . . . . 16
β’ ((π β Fin β§ π
β Ring) β (π β πΈ β π β (Baseβ(Scalarβπ΄)))) |
21 | 20 | adantr 482 |
. . . . . . . . . . . . . . 15
β’ (((π β Fin β§ π
β Ring) β§ π β πΈ) β (π β πΈ β π β (Baseβ(Scalarβπ΄)))) |
22 | 21 | imp 408 |
. . . . . . . . . . . . . 14
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β π β (Baseβ(Scalarβπ΄))) |
23 | 18 | eleq2d 2820 |
. . . . . . . . . . . . . . . 16
β’ ((π β Fin β§ π
β Ring) β (π β πΈ β π β (Baseβ(Scalarβπ΄)))) |
24 | 23 | biimpa 478 |
. . . . . . . . . . . . . . 15
β’ (((π β Fin β§ π
β Ring) β§ π β πΈ) β π β (Baseβ(Scalarβπ΄))) |
25 | 24 | adantr 482 |
. . . . . . . . . . . . . 14
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β π β (Baseβ(Scalarβπ΄))) |
26 | 2 | matring 21815 |
. . . . . . . . . . . . . . . 16
β’ ((π β Fin β§ π
β Ring) β π΄ β Ring) |
27 | 3, 4 | ringidcl 19997 |
. . . . . . . . . . . . . . . 16
β’ (π΄ β Ring β
(1rβπ΄)
β π΅) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . . . . . 15
β’ ((π β Fin β§ π
β Ring) β
(1rβπ΄)
β π΅) |
29 | 28 | ad2antrr 725 |
. . . . . . . . . . . . . 14
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β (1rβπ΄) β π΅) |
30 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(+gβπ΄) = (+gβπ΄) |
31 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(Scalarβπ΄) =
(Scalarβπ΄) |
32 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(Baseβ(Scalarβπ΄)) = (Baseβ(Scalarβπ΄)) |
33 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(+gβ(Scalarβπ΄)) =
(+gβ(Scalarβπ΄)) |
34 | 3, 30, 31, 5, 32, 33 | lmodvsdir 20390 |
. . . . . . . . . . . . . 14
β’ ((π΄ β LMod β§ (π β
(Baseβ(Scalarβπ΄)) β§ π β (Baseβ(Scalarβπ΄)) β§
(1rβπ΄)
β π΅)) β ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) = ((π( Β·π
βπ΄)(1rβπ΄))(+gβπ΄)(π( Β·π
βπ΄)(1rβπ΄)))) |
35 | 15, 22, 25, 29, 34 | syl13anc 1373 |
. . . . . . . . . . . . 13
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) = ((π( Β·π
βπ΄)(1rβπ΄))(+gβπ΄)(π( Β·π
βπ΄)(1rβπ΄)))) |
36 | 35 | eqcomd 2739 |
. . . . . . . . . . . 12
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β ((π( Β·π
βπ΄)(1rβπ΄))(+gβπ΄)(π( Β·π
βπ΄)(1rβπ΄))) = ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄))) |
37 | | simpll 766 |
. . . . . . . . . . . . . 14
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β (π β Fin β§ π
β Ring)) |
38 | 16 | eqcomd 2739 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β Fin β§ π
β Ring) β
(Scalarβπ΄) = π
) |
39 | 38 | ad2antrr 725 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β (Scalarβπ΄) = π
) |
40 | 39 | fveq2d 6850 |
. . . . . . . . . . . . . . . 16
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β
(+gβ(Scalarβπ΄)) = (+gβπ
)) |
41 | 40 | oveqd 7378 |
. . . . . . . . . . . . . . 15
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β (π(+gβ(Scalarβπ΄))π) = (π(+gβπ
)π)) |
42 | | ringgrp 19977 |
. . . . . . . . . . . . . . . . . 18
β’ (π
β Ring β π
β Grp) |
43 | 42 | adantl 483 |
. . . . . . . . . . . . . . . . 17
β’ ((π β Fin β§ π
β Ring) β π
β Grp) |
44 | 43 | ad2antrr 725 |
. . . . . . . . . . . . . . . 16
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β π
β Grp) |
45 | | simpr 486 |
. . . . . . . . . . . . . . . 16
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β π β πΈ) |
46 | | simplr 768 |
. . . . . . . . . . . . . . . 16
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β π β πΈ) |
47 | | eqid 2733 |
. . . . . . . . . . . . . . . . 17
β’
(+gβπ
) = (+gβπ
) |
48 | 1, 47 | grpcl 18764 |
. . . . . . . . . . . . . . . 16
β’ ((π
β Grp β§ π β πΈ β§ π β πΈ) β (π(+gβπ
)π) β πΈ) |
49 | 44, 45, 46, 48 | syl3anc 1372 |
. . . . . . . . . . . . . . 15
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β (π(+gβπ
)π) β πΈ) |
50 | 41, 49 | eqeltrd 2834 |
. . . . . . . . . . . . . 14
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β (π(+gβ(Scalarβπ΄))π) β πΈ) |
51 | 1, 2, 3, 5 | matvscl 21803 |
. . . . . . . . . . . . . 14
β’ (((π β Fin β§ π
β Ring) β§ ((π(+gβ(Scalarβπ΄))π) β πΈ β§ (1rβπ΄) β π΅)) β ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) β π΅) |
52 | 37, 50, 29, 51 | syl12anc 836 |
. . . . . . . . . . . . 13
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) β π΅) |
53 | | oveq1 7368 |
. . . . . . . . . . . . . . . 16
β’ (π = (π(+gβ(Scalarβπ΄))π) β (π( Β·π
βπ΄)(1rβπ΄)) = ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄))) |
54 | 53 | eqeq2d 2744 |
. . . . . . . . . . . . . . 15
β’ (π = (π(+gβ(Scalarβπ΄))π) β (((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) = (π( Β·π
βπ΄)(1rβπ΄)) β ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) = ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)))) |
55 | 54 | adantl 483 |
. . . . . . . . . . . . . 14
β’
(((((π β Fin
β§ π
β Ring) β§
π β πΈ) β§ π β πΈ) β§ π = (π(+gβ(Scalarβπ΄))π)) β (((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) = (π( Β·π
βπ΄)(1rβπ΄)) β ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) = ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)))) |
56 | | eqidd 2734 |
. . . . . . . . . . . . . 14
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) = ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄))) |
57 | 50, 55, 56 | rspcedvd 3585 |
. . . . . . . . . . . . 13
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β βπ β πΈ ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) = (π( Β·π
βπ΄)(1rβπ΄))) |
58 | 1, 2, 3, 4, 5, 6 | scmatel 21877 |
. . . . . . . . . . . . . 14
β’ ((π β Fin β§ π
β Ring) β (((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) β π β (((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) β π΅ β§ βπ β πΈ ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) = (π( Β·π
βπ΄)(1rβπ΄))))) |
59 | 58 | ad2antrr 725 |
. . . . . . . . . . . . 13
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β (((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) β π β (((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) β π΅ β§ βπ β πΈ ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) = (π( Β·π
βπ΄)(1rβπ΄))))) |
60 | 52, 57, 59 | mpbir2and 712 |
. . . . . . . . . . . 12
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β ((π(+gβ(Scalarβπ΄))π)( Β·π
βπ΄)(1rβπ΄)) β π) |
61 | 36, 60 | eqeltrd 2834 |
. . . . . . . . . . 11
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β ((π( Β·π
βπ΄)(1rβπ΄))(+gβπ΄)(π( Β·π
βπ΄)(1rβπ΄))) β π) |
62 | 61 | adantr 482 |
. . . . . . . . . 10
β’
(((((π β Fin
β§ π
β Ring) β§
π β πΈ) β§ π β πΈ) β§ (π = (π( Β·π
βπ΄)(1rβπ΄)) β§ π = (π( Β·π
βπ΄)(1rβπ΄)))) β ((π( Β·π
βπ΄)(1rβπ΄))(+gβπ΄)(π( Β·π
βπ΄)(1rβπ΄))) β π) |
63 | 13, 62 | eqeltrd 2834 |
. . . . . . . . 9
β’
(((((π β Fin
β§ π
β Ring) β§
π β πΈ) β§ π β πΈ) β§ (π = (π( Β·π
βπ΄)(1rβπ΄)) β§ π = (π( Β·π
βπ΄)(1rβπ΄)))) β (π(+gβπ΄)π) β π) |
64 | 63 | exp32 422 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β Ring) β§ π β πΈ) β§ π β πΈ) β (π = (π( Β·π
βπ΄)(1rβπ΄)) β (π = (π( Β·π
βπ΄)(1rβπ΄)) β (π(+gβπ΄)π) β π))) |
65 | 64 | rexlimdva 3149 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring) β§ π β πΈ) β (βπ β πΈ π = (π( Β·π
βπ΄)(1rβπ΄)) β (π = (π( Β·π
βπ΄)(1rβπ΄)) β (π(+gβπ΄)π) β π))) |
66 | 65 | com23 86 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring) β§ π β πΈ) β (π = (π( Β·π
βπ΄)(1rβπ΄)) β (βπ β πΈ π = (π( Β·π
βπ΄)(1rβπ΄)) β (π(+gβπ΄)π) β π))) |
67 | 66 | rexlimdva 3149 |
. . . . 5
β’ ((π β Fin β§ π
β Ring) β
(βπ β πΈ π = (π( Β·π
βπ΄)(1rβπ΄)) β (βπ β πΈ π = (π( Β·π
βπ΄)(1rβπ΄)) β (π(+gβπ΄)π) β π))) |
68 | 11, 67 | syldc 48 |
. . . 4
β’ (π β π β ((π β Fin β§ π
β Ring) β (βπ β πΈ π = (π( Β·π
βπ΄)(1rβπ΄)) β (π(+gβπ΄)π) β π))) |
69 | 68 | adantl 483 |
. . 3
β’ ((π β π β§ π β π) β ((π β Fin β§ π
β Ring) β (βπ β πΈ π = (π( Β·π
βπ΄)(1rβπ΄)) β (π(+gβπ΄)π) β π))) |
70 | 69 | impcom 409 |
. 2
β’ (((π β Fin β§ π
β Ring) β§ (π β π β§ π β π)) β (βπ β πΈ π = (π( Β·π
βπ΄)(1rβπ΄)) β (π(+gβπ΄)π) β π)) |
71 | 9, 70 | mpd 15 |
1
β’ (((π β Fin β§ π
β Ring) β§ (π β π β§ π β π)) β (π(+gβπ΄)π) β π) |