MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgcfil Structured version   Visualization version   GIF version

Theorem fgcfil 25204
Description: The Cauchy filter condition for a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
fgcfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧

Proof of Theorem fgcfil
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 cfili 25201 . . . . . 6 (((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥)
21adantll 714 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥)
3 elfg 23792 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑋) → (𝑢 ∈ (𝑋filGen𝐵) ↔ (𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢)))
43ad3antlr 731 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑢 ∈ (𝑋filGen𝐵) ↔ (𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢)))
5 ssralv 3998 . . . . . . . . . . . 12 (𝑦𝑢 → (∀𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∀𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
65ralimdv 3146 . . . . . . . . . . 11 (𝑦𝑢 → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∀𝑧𝑢𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
7 ssralv 3998 . . . . . . . . . . 11 (𝑦𝑢 → (∀𝑧𝑢𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
86, 7syldc 48 . . . . . . . . . 10 (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → (𝑦𝑢 → ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
98reximdv 3147 . . . . . . . . 9 (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → (∃𝑦𝐵 𝑦𝑢 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
109com12 32 . . . . . . . 8 (∃𝑦𝐵 𝑦𝑢 → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
1110adantl 481 . . . . . . 7 ((𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢) → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
124, 11biimtrdi 253 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑢 ∈ (𝑋filGen𝐵) → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
1312rexlimdv 3131 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
142, 13mpd 15 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)
1514ralrimiva 3124 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)
1615ex 412 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) → ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
17 ssfg 23793 . . . . . 6 (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵))
1817adantl 481 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → 𝐵 ⊆ (𝑋filGen𝐵))
19 ssrexv 3999 . . . . . 6 (𝐵 ⊆ (𝑋filGen𝐵) → (∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
2019ralimdv 3146 . . . . 5 (𝐵 ⊆ (𝑋filGen𝐵) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
2118, 20syl 17 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
22 fgcl 23799 . . . . 5 (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
2322adantl 481 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
2421, 23jctild 525 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
25 iscfil2 25199 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
2625adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
2724, 26sylibrd 259 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → (𝑋filGen𝐵) ∈ (CauFil‘𝐷)))
2816, 27impbid 212 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  wrex 3056  wss 3897   class class class wbr 5093  cfv 6487  (class class class)co 7352   < clt 11152  +crp 12896  ∞Metcxmet 21282  fBascfbas 21285  filGencfg 21286  Filcfil 23766  CauFilccfil 25185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-2 12194  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ico 13257  df-xmet 21290  df-fbas 21294  df-fg 21295  df-fil 23767  df-cfil 25188
This theorem is referenced by:  fmcfil  25205  cfilresi  25228  minveclem3  25362
  Copyright terms: Public domain W3C validator