Step | Hyp | Ref
| Expression |
1 | | cfili 24432 |
. . . . . 6
⊢ (((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ ℝ+) →
∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥) |
2 | 1 | adantll 711 |
. . . . 5
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) →
∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥) |
3 | | elfg 23022 |
. . . . . . . 8
⊢ (𝐵 ∈ (fBas‘𝑋) → (𝑢 ∈ (𝑋filGen𝐵) ↔ (𝑢 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑢))) |
4 | 3 | ad3antlr 728 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑢 ∈ (𝑋filGen𝐵) ↔ (𝑢 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑢))) |
5 | | ssralv 3987 |
. . . . . . . . . . . 12
⊢ (𝑦 ⊆ 𝑢 → (∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
6 | 5 | ralimdv 3109 |
. . . . . . . . . . 11
⊢ (𝑦 ⊆ 𝑢 → (∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → ∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
7 | | ssralv 3987 |
. . . . . . . . . . 11
⊢ (𝑦 ⊆ 𝑢 → (∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
8 | 6, 7 | syldc 48 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → (𝑦 ⊆ 𝑢 → ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
9 | 8 | reximdv 3202 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → (∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑢 → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
10 | 9 | com12 32 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐵 𝑦 ⊆ 𝑢 → (∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
11 | 10 | adantl 482 |
. . . . . . 7
⊢ ((𝑢 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑢) → (∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
12 | 4, 11 | syl6bi 252 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑢 ∈ (𝑋filGen𝐵) → (∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥))) |
13 | 12 | rexlimdv 3212 |
. . . . 5
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) →
(∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
14 | 2, 13 | mpd 15 |
. . . 4
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥) |
15 | 14 | ralrimiva 3103 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥) |
16 | 15 | ex 413 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
17 | | ssfg 23023 |
. . . . . 6
⊢ (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵)) |
18 | 17 | adantl 482 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → 𝐵 ⊆ (𝑋filGen𝐵)) |
19 | | ssrexv 3988 |
. . . . . 6
⊢ (𝐵 ⊆ (𝑋filGen𝐵) → (∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
20 | 19 | ralimdv 3109 |
. . . . 5
⊢ (𝐵 ⊆ (𝑋filGen𝐵) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
21 | 18, 20 | syl 17 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
22 | | fgcl 23029 |
. . . . 5
⊢ (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋)) |
23 | 22 | adantl 482 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝑋filGen𝐵) ∈ (Fil‘𝑋)) |
24 | 21, 23 | jctild 526 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥 → ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥))) |
25 | | iscfil2 24430 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥))) |
26 | 25 | adantr 481 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥))) |
27 | 24, 26 | sylibrd 258 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥 → (𝑋filGen𝐵) ∈ (CauFil‘𝐷))) |
28 | 16, 27 | impbid 211 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |