| Step | Hyp | Ref
| Expression |
| 1 | | cfili 25302 |
. . . . . 6
⊢ (((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ ℝ+) →
∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥) |
| 2 | 1 | adantll 714 |
. . . . 5
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) →
∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥) |
| 3 | | elfg 23879 |
. . . . . . . 8
⊢ (𝐵 ∈ (fBas‘𝑋) → (𝑢 ∈ (𝑋filGen𝐵) ↔ (𝑢 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑢))) |
| 4 | 3 | ad3antlr 731 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑢 ∈ (𝑋filGen𝐵) ↔ (𝑢 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑢))) |
| 5 | | ssralv 4052 |
. . . . . . . . . . . 12
⊢ (𝑦 ⊆ 𝑢 → (∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
| 6 | 5 | ralimdv 3169 |
. . . . . . . . . . 11
⊢ (𝑦 ⊆ 𝑢 → (∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → ∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
| 7 | | ssralv 4052 |
. . . . . . . . . . 11
⊢ (𝑦 ⊆ 𝑢 → (∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
| 8 | 6, 7 | syldc 48 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → (𝑦 ⊆ 𝑢 → ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
| 9 | 8 | reximdv 3170 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → (∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑢 → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
| 10 | 9 | com12 32 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐵 𝑦 ⊆ 𝑢 → (∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
| 11 | 10 | adantl 481 |
. . . . . . 7
⊢ ((𝑢 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑢) → (∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
| 12 | 4, 11 | biimtrdi 253 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑢 ∈ (𝑋filGen𝐵) → (∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥))) |
| 13 | 12 | rexlimdv 3153 |
. . . . 5
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) →
(∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
| 14 | 2, 13 | mpd 15 |
. . . 4
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥) |
| 15 | 14 | ralrimiva 3146 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥) |
| 16 | 15 | ex 412 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
| 17 | | ssfg 23880 |
. . . . . 6
⊢ (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵)) |
| 18 | 17 | adantl 481 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → 𝐵 ⊆ (𝑋filGen𝐵)) |
| 19 | | ssrexv 4053 |
. . . . . 6
⊢ (𝐵 ⊆ (𝑋filGen𝐵) → (∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
| 20 | 19 | ralimdv 3169 |
. . . . 5
⊢ (𝐵 ⊆ (𝑋filGen𝐵) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
| 21 | 18, 20 | syl 17 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |
| 22 | | fgcl 23886 |
. . . . 5
⊢ (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋)) |
| 23 | 22 | adantl 481 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝑋filGen𝐵) ∈ (Fil‘𝑋)) |
| 24 | 21, 23 | jctild 525 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥 → ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥))) |
| 25 | | iscfil2 25300 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥))) |
| 26 | 25 | adantr 480 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥))) |
| 27 | 24, 26 | sylibrd 259 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥 → (𝑋filGen𝐵) ∈ (CauFil‘𝐷))) |
| 28 | 16, 27 | impbid 212 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) |