MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgcfil Structured version   Visualization version   GIF version

Theorem fgcfil 24435
Description: The Cauchy filter condition for a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
fgcfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧

Proof of Theorem fgcfil
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 cfili 24432 . . . . . 6 (((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥)
21adantll 711 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥)
3 elfg 23022 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑋) → (𝑢 ∈ (𝑋filGen𝐵) ↔ (𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢)))
43ad3antlr 728 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑢 ∈ (𝑋filGen𝐵) ↔ (𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢)))
5 ssralv 3987 . . . . . . . . . . . 12 (𝑦𝑢 → (∀𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∀𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
65ralimdv 3109 . . . . . . . . . . 11 (𝑦𝑢 → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∀𝑧𝑢𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
7 ssralv 3987 . . . . . . . . . . 11 (𝑦𝑢 → (∀𝑧𝑢𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
86, 7syldc 48 . . . . . . . . . 10 (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → (𝑦𝑢 → ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
98reximdv 3202 . . . . . . . . 9 (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → (∃𝑦𝐵 𝑦𝑢 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
109com12 32 . . . . . . . 8 (∃𝑦𝐵 𝑦𝑢 → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
1110adantl 482 . . . . . . 7 ((𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢) → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
124, 11syl6bi 252 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑢 ∈ (𝑋filGen𝐵) → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
1312rexlimdv 3212 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
142, 13mpd 15 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)
1514ralrimiva 3103 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)
1615ex 413 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) → ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
17 ssfg 23023 . . . . . 6 (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵))
1817adantl 482 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → 𝐵 ⊆ (𝑋filGen𝐵))
19 ssrexv 3988 . . . . . 6 (𝐵 ⊆ (𝑋filGen𝐵) → (∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
2019ralimdv 3109 . . . . 5 (𝐵 ⊆ (𝑋filGen𝐵) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
2118, 20syl 17 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
22 fgcl 23029 . . . . 5 (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
2322adantl 482 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
2421, 23jctild 526 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
25 iscfil2 24430 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
2625adantr 481 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
2724, 26sylibrd 258 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → (𝑋filGen𝐵) ∈ (CauFil‘𝐷)))
2816, 27impbid 211 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wral 3064  wrex 3065  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275   < clt 11009  +crp 12730  ∞Metcxmet 20582  fBascfbas 20585  filGencfg 20586  Filcfil 22996  CauFilccfil 24416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-xmet 20590  df-fbas 20594  df-fg 20595  df-fil 22997  df-cfil 24419
This theorem is referenced by:  fmcfil  24436  cfilresi  24459  minveclem3  24593
  Copyright terms: Public domain W3C validator