MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgcfil Structured version   Visualization version   GIF version

Theorem fgcfil 25305
Description: The Cauchy filter condition for a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
fgcfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧

Proof of Theorem fgcfil
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 cfili 25302 . . . . . 6 (((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥)
21adantll 714 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥)
3 elfg 23879 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑋) → (𝑢 ∈ (𝑋filGen𝐵) ↔ (𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢)))
43ad3antlr 731 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑢 ∈ (𝑋filGen𝐵) ↔ (𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢)))
5 ssralv 4052 . . . . . . . . . . . 12 (𝑦𝑢 → (∀𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∀𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
65ralimdv 3169 . . . . . . . . . . 11 (𝑦𝑢 → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∀𝑧𝑢𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
7 ssralv 4052 . . . . . . . . . . 11 (𝑦𝑢 → (∀𝑧𝑢𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
86, 7syldc 48 . . . . . . . . . 10 (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → (𝑦𝑢 → ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
98reximdv 3170 . . . . . . . . 9 (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → (∃𝑦𝐵 𝑦𝑢 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
109com12 32 . . . . . . . 8 (∃𝑦𝐵 𝑦𝑢 → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
1110adantl 481 . . . . . . 7 ((𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢) → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
124, 11biimtrdi 253 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑢 ∈ (𝑋filGen𝐵) → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
1312rexlimdv 3153 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
142, 13mpd 15 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)
1514ralrimiva 3146 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)
1615ex 412 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) → ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
17 ssfg 23880 . . . . . 6 (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵))
1817adantl 481 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → 𝐵 ⊆ (𝑋filGen𝐵))
19 ssrexv 4053 . . . . . 6 (𝐵 ⊆ (𝑋filGen𝐵) → (∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
2019ralimdv 3169 . . . . 5 (𝐵 ⊆ (𝑋filGen𝐵) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
2118, 20syl 17 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
22 fgcl 23886 . . . . 5 (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
2322adantl 481 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
2421, 23jctild 525 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
25 iscfil2 25300 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
2625adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
2724, 26sylibrd 259 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → (𝑋filGen𝐵) ∈ (CauFil‘𝐷)))
2816, 27impbid 212 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3061  wrex 3070  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431   < clt 11295  +crp 13034  ∞Metcxmet 21349  fBascfbas 21352  filGencfg 21353  Filcfil 23853  CauFilccfil 25286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-xmet 21357  df-fbas 21361  df-fg 21362  df-fil 23854  df-cfil 25289
This theorem is referenced by:  fmcfil  25306  cfilresi  25329  minveclem3  25463
  Copyright terms: Public domain W3C validator