MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgcfil Structured version   Visualization version   GIF version

Theorem fgcfil 25318
Description: The Cauchy filter condition for a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
fgcfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧

Proof of Theorem fgcfil
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 cfili 25315 . . . . . 6 (((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥)
21adantll 714 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥)
3 elfg 23894 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑋) → (𝑢 ∈ (𝑋filGen𝐵) ↔ (𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢)))
43ad3antlr 731 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑢 ∈ (𝑋filGen𝐵) ↔ (𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢)))
5 ssralv 4063 . . . . . . . . . . . 12 (𝑦𝑢 → (∀𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∀𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
65ralimdv 3166 . . . . . . . . . . 11 (𝑦𝑢 → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∀𝑧𝑢𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
7 ssralv 4063 . . . . . . . . . . 11 (𝑦𝑢 → (∀𝑧𝑢𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
86, 7syldc 48 . . . . . . . . . 10 (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → (𝑦𝑢 → ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
98reximdv 3167 . . . . . . . . 9 (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → (∃𝑦𝐵 𝑦𝑢 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
109com12 32 . . . . . . . 8 (∃𝑦𝐵 𝑦𝑢 → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
1110adantl 481 . . . . . . 7 ((𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢) → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
124, 11biimtrdi 253 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑢 ∈ (𝑋filGen𝐵) → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
1312rexlimdv 3150 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
142, 13mpd 15 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)
1514ralrimiva 3143 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)
1615ex 412 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) → ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
17 ssfg 23895 . . . . . 6 (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵))
1817adantl 481 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → 𝐵 ⊆ (𝑋filGen𝐵))
19 ssrexv 4064 . . . . . 6 (𝐵 ⊆ (𝑋filGen𝐵) → (∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
2019ralimdv 3166 . . . . 5 (𝐵 ⊆ (𝑋filGen𝐵) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
2118, 20syl 17 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
22 fgcl 23901 . . . . 5 (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
2322adantl 481 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
2421, 23jctild 525 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
25 iscfil2 25313 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
2625adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
2724, 26sylibrd 259 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → (𝑋filGen𝐵) ∈ (CauFil‘𝐷)))
2816, 27impbid 212 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2105  wral 3058  wrex 3067  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430   < clt 11292  +crp 13031  ∞Metcxmet 21366  fBascfbas 21369  filGencfg 21370  Filcfil 23868  CauFilccfil 25299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-2 12326  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ico 13389  df-xmet 21374  df-fbas 21378  df-fg 21379  df-fil 23869  df-cfil 25302
This theorem is referenced by:  fmcfil  25319  cfilresi  25342  minveclem3  25476
  Copyright terms: Public domain W3C validator