MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgcfil Structured version   Visualization version   GIF version

Theorem fgcfil 25178
Description: The Cauchy filter condition for a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
fgcfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧

Proof of Theorem fgcfil
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 cfili 25175 . . . . . 6 (((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥)
21adantll 714 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥)
3 elfg 23765 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑋) → (𝑢 ∈ (𝑋filGen𝐵) ↔ (𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢)))
43ad3antlr 731 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑢 ∈ (𝑋filGen𝐵) ↔ (𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢)))
5 ssralv 4018 . . . . . . . . . . . 12 (𝑦𝑢 → (∀𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∀𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
65ralimdv 3148 . . . . . . . . . . 11 (𝑦𝑢 → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∀𝑧𝑢𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
7 ssralv 4018 . . . . . . . . . . 11 (𝑦𝑢 → (∀𝑧𝑢𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
86, 7syldc 48 . . . . . . . . . 10 (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → (𝑦𝑢 → ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
98reximdv 3149 . . . . . . . . 9 (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → (∃𝑦𝐵 𝑦𝑢 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
109com12 32 . . . . . . . 8 (∃𝑦𝐵 𝑦𝑢 → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
1110adantl 481 . . . . . . 7 ((𝑢𝑋 ∧ ∃𝑦𝐵 𝑦𝑢) → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
124, 11biimtrdi 253 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑢 ∈ (𝑋filGen𝐵) → (∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
1312rexlimdv 3133 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (∃𝑢 ∈ (𝑋filGen𝐵)∀𝑧𝑢𝑤𝑢 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
142, 13mpd 15 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)
1514ralrimiva 3126 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ (𝑋filGen𝐵) ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)
1615ex 412 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) → ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
17 ssfg 23766 . . . . . 6 (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵))
1817adantl 481 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → 𝐵 ⊆ (𝑋filGen𝐵))
19 ssrexv 4019 . . . . . 6 (𝐵 ⊆ (𝑋filGen𝐵) → (∃𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∃𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
2019ralimdv 3148 . . . . 5 (𝐵 ⊆ (𝑋filGen𝐵) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
2118, 20syl 17 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
22 fgcl 23772 . . . . 5 (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
2322adantl 481 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
2421, 23jctild 525 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
25 iscfil2 25173 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
2625adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ((𝑋filGen𝐵) ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝑋filGen𝐵)∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
2724, 26sylibrd 259 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥 → (𝑋filGen𝐵) ∈ (CauFil‘𝐷)))
2816, 27impbid 212 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390   < clt 11215  +crp 12958  ∞Metcxmet 21256  fBascfbas 21259  filGencfg 21260  Filcfil 23739  CauFilccfil 25159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-2 12256  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-xmet 21264  df-fbas 21268  df-fg 21269  df-fil 23740  df-cfil 25162
This theorem is referenced by:  fmcfil  25179  cfilresi  25202  minveclem3  25336
  Copyright terms: Public domain W3C validator