MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cply1mul Structured version   Visualization version   GIF version

Theorem cply1mul 21665
Description: The product of two constant polynomials is a constant polynomial. (Contributed by AV, 18-Nov-2019.)
Hypotheses
Ref Expression
cply1mul.p 𝑃 = (Poly1𝑅)
cply1mul.b 𝐵 = (Base‘𝑃)
cply1mul.0 0 = (0g𝑅)
cply1mul.m × = (.r𝑃)
Assertion
Ref Expression
cply1mul ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 ) → ∀𝑐 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 ))
Distinct variable groups:   𝐹,𝑐   𝐺,𝑐   × ,𝑐   0 ,𝑐
Allowed substitution hints:   𝐵(𝑐)   𝑃(𝑐)   𝑅(𝑐)

Proof of Theorem cply1mul
Dummy variables 𝑘 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cply1mul.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
2 cply1mul.m . . . . . . . . . 10 × = (.r𝑃)
3 eqid 2736 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
4 cply1mul.b . . . . . . . . . 10 𝐵 = (Base‘𝑃)
51, 2, 3, 4coe1mul 21641 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 × 𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘)))))))
653expb 1120 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (coe1‘(𝐹 × 𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘)))))))
76adantr 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) → (coe1‘(𝐹 × 𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘)))))))
87adantr 481 . . . . . 6 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (coe1‘(𝐹 × 𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘)))))))
9 oveq2 7365 . . . . . . . . 9 (𝑠 = 𝑛 → (0...𝑠) = (0...𝑛))
10 fvoveq1 7380 . . . . . . . . . 10 (𝑠 = 𝑛 → ((coe1𝐺)‘(𝑠𝑘)) = ((coe1𝐺)‘(𝑛𝑘)))
1110oveq2d 7373 . . . . . . . . 9 (𝑠 = 𝑛 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘))) = (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))))
129, 11mpteq12dv 5196 . . . . . . . 8 (𝑠 = 𝑛 → (𝑘 ∈ (0...𝑠) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘)))))
1312oveq2d 7373 . . . . . . 7 (𝑠 = 𝑛 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))))))
1413adantl 482 . . . . . 6 (((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 = 𝑛) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))))))
15 nnnn0 12420 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1615adantl 482 . . . . . 6 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
17 ovexd 7392 . . . . . 6 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))))) ∈ V)
188, 14, 16, 17fvmptd 6955 . . . . 5 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → ((coe1‘(𝐹 × 𝐺))‘𝑛) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))))))
19 r19.26 3114 . . . . . . . . . 10 (∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 ) ↔ (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 ))
20 oveq2 7365 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 0 → (𝑛𝑘) = (𝑛 − 0))
21 nncn 12161 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2221subid1d 11501 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝑛 − 0) = 𝑛)
2322adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (𝑛 − 0) = 𝑛)
2420, 23sylan9eqr 2798 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (𝑛𝑘) = 𝑛)
25 simpll 765 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → 𝑛 ∈ ℕ)
2624, 25eqeltrd 2838 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (𝑛𝑘) ∈ ℕ)
27 fveqeq2 6851 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝑛𝑘) → (((coe1𝐺)‘𝑐) = 0 ↔ ((coe1𝐺)‘(𝑛𝑘)) = 0 ))
2827rspcv 3577 . . . . . . . . . . . . . . . . 17 ((𝑛𝑘) ∈ ℕ → (∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 → ((coe1𝐺)‘(𝑛𝑘)) = 0 ))
2926, 28syl 17 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 → ((coe1𝐺)‘(𝑛𝑘)) = 0 ))
30 oveq2 7365 . . . . . . . . . . . . . . . . . . . 20 (((coe1𝐺)‘(𝑛𝑘)) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = (((coe1𝐹)‘𝑘)(.r𝑅) 0 ))
31 simpll 765 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → 𝑅 ∈ Ring)
32 simprl 769 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → 𝐹𝐵)
33 elfznn0 13534 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
3433adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
3534adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → 𝑘 ∈ ℕ0)
36 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (coe1𝐹) = (coe1𝐹)
37 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (Base‘𝑅) = (Base‘𝑅)
3836, 4, 1, 37coe1fvalcl 21583 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝐵𝑘 ∈ ℕ0) → ((coe1𝐹)‘𝑘) ∈ (Base‘𝑅))
3932, 35, 38syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → ((coe1𝐹)‘𝑘) ∈ (Base‘𝑅))
40 cply1mul.0 . . . . . . . . . . . . . . . . . . . . . 22 0 = (0g𝑅)
4137, 3, 40ringrz 20012 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑘) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑘)(.r𝑅) 0 ) = 0 )
4231, 39, 41syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → (((coe1𝐹)‘𝑘)(.r𝑅) 0 ) = 0 )
4330, 42sylan9eqr 2798 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) ∧ ((coe1𝐺)‘(𝑛𝑘)) = 0 ) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )
4443ex 413 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → (((coe1𝐺)‘(𝑛𝑘)) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))
4544expcom 414 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐺)‘(𝑛𝑘)) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))
4645com23 86 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (((coe1𝐺)‘(𝑛𝑘)) = 0 → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))
4729, 46syldc 48 . . . . . . . . . . . . . . 15 (∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 → (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))
4847expd 416 . . . . . . . . . . . . . 14 (∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
4948com24 95 . . . . . . . . . . . . 13 (∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
5049adantl 482 . . . . . . . . . . . 12 ((∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 ) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
5150com13 88 . . . . . . . . . . 11 (𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → ((∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
52 neqne 2951 . . . . . . . . . . . . . . . . . . . . . 22 𝑘 = 0 → 𝑘 ≠ 0)
5352, 33anim12ci 614 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0𝑘 ≠ 0))
54 elnnne0 12427 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0𝑘 ≠ 0))
5553, 54sylibr 233 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ)
56 fveqeq2 6851 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = 𝑘 → (((coe1𝐹)‘𝑐) = 0 ↔ ((coe1𝐹)‘𝑘) = 0 ))
5756rspcv 3577 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → ((coe1𝐹)‘𝑘) = 0 ))
5855, 57syl 17 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → ((coe1𝐹)‘𝑘) = 0 ))
59 oveq1 7364 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((coe1𝐹)‘𝑘) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = ( 0 (.r𝑅)((coe1𝐺)‘(𝑛𝑘))))
60 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → 𝑅 ∈ Ring)
614eleq2i 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐺𝐵𝐺 ∈ (Base‘𝑃))
6261biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐺𝐵𝐺 ∈ (Base‘𝑃))
6362adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐵𝐺𝐵) → 𝐺 ∈ (Base‘𝑃))
6463adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → 𝐺 ∈ (Base‘𝑃))
65 fznn0sub 13473 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ (0...𝑛) → (𝑛𝑘) ∈ ℕ0)
66 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (coe1𝐺) = (coe1𝐺)
67 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Base‘𝑃) = (Base‘𝑃)
6866, 67, 1, 37coe1fvalcl 21583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐺 ∈ (Base‘𝑃) ∧ (𝑛𝑘) ∈ ℕ0) → ((coe1𝐺)‘(𝑛𝑘)) ∈ (Base‘𝑅))
6964, 65, 68syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → ((coe1𝐺)‘(𝑛𝑘)) ∈ (Base‘𝑅))
7037, 3, 40ringlz 20011 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘(𝑛𝑘)) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )
7160, 69, 70syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → ( 0 (.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )
7259, 71sylan9eqr 2798 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑘 ∈ (0...𝑛)) ∧ ((coe1𝐹)‘𝑘) = 0 ) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )
7372ex 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))
7473ex 413 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (𝑘 ∈ (0...𝑛) → (((coe1𝐹)‘𝑘) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))
7574com23 86 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘) = 0 → (𝑘 ∈ (0...𝑛) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))
7675a1dd 50 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → (𝑘 ∈ (0...𝑛) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
7776com14 96 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...𝑛) → (((coe1𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
7877adantl 482 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
7958, 78syld 47 . . . . . . . . . . . . . . . . . 18 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
8079com24 95 . . . . . . . . . . . . . . . . 17 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (𝑛 ∈ ℕ → (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
8180ex 413 . . . . . . . . . . . . . . . 16 𝑘 = 0 → (𝑘 ∈ (0...𝑛) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (𝑛 ∈ ℕ → (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))))
8281com14 96 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑘 ∈ (0...𝑛) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (¬ 𝑘 = 0 → (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))))
8382imp 407 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (¬ 𝑘 = 0 → (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
8483com14 96 . . . . . . . . . . . . 13 (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (¬ 𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
8584adantr 481 . . . . . . . . . . . 12 ((∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 ) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (¬ 𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
8685com13 88 . . . . . . . . . . 11 𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → ((∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
8751, 86pm2.61i 182 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → ((∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))
8819, 87biimtrid 241 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))
8988imp 407 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))
9089impl 456 . . . . . . 7 (((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )
9190mpteq2dva 5205 . . . . . 6 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (0...𝑛) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ 0 ))
9291oveq2d 7373 . . . . 5 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )))
93 ringmnd 19974 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
94 ovexd 7392 . . . . . . . . 9 (𝑅 ∈ Ring → (0...𝑛) ∈ V)
9540gsumz 18646 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 )
9693, 94, 95syl2anc 584 . . . . . . . 8 (𝑅 ∈ Ring → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 )
9796adantr 481 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 )
9897adantr 481 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 )
9998adantr 481 . . . . 5 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 )
10018, 92, 993eqtrd 2780 . . . 4 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → ((coe1‘(𝐹 × 𝐺))‘𝑛) = 0 )
101100ralrimiva 3143 . . 3 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) → ∀𝑛 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑛) = 0 )
102 fveqeq2 6851 . . . 4 (𝑐 = 𝑛 → (((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 ↔ ((coe1‘(𝐹 × 𝐺))‘𝑛) = 0 ))
103102cbvralvw 3225 . . 3 (∀𝑐 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 ↔ ∀𝑛 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑛) = 0 )
104101, 103sylibr 233 . 2 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) → ∀𝑐 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 )
105104ex 413 1 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 ) → ∀𝑐 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  Vcvv 3445  cmpt 5188  cfv 6496  (class class class)co 7357  0cc0 11051  cmin 11385  cn 12153  0cn0 12413  ...cfz 13424  Basecbs 17083  .rcmulr 17134  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556  Ringcrg 19964  Poly1cpl1 21548  coe1cco1 21549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-mulg 18873  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-psr 21311  df-mpl 21313  df-opsr 21315  df-psr1 21551  df-ply1 21553  df-coe1 21554
This theorem is referenced by:  cpmatmcllem  22067
  Copyright terms: Public domain W3C validator