MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cply1mul Structured version   Visualization version   GIF version

Theorem cply1mul 21375
Description: The product of two constant polynomials is a constant polynomial. (Contributed by AV, 18-Nov-2019.)
Hypotheses
Ref Expression
cply1mul.p 𝑃 = (Poly1𝑅)
cply1mul.b 𝐵 = (Base‘𝑃)
cply1mul.0 0 = (0g𝑅)
cply1mul.m × = (.r𝑃)
Assertion
Ref Expression
cply1mul ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 ) → ∀𝑐 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 ))
Distinct variable groups:   𝐹,𝑐   𝐺,𝑐   × ,𝑐   0 ,𝑐
Allowed substitution hints:   𝐵(𝑐)   𝑃(𝑐)   𝑅(𝑐)

Proof of Theorem cply1mul
Dummy variables 𝑘 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cply1mul.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
2 cply1mul.m . . . . . . . . . 10 × = (.r𝑃)
3 eqid 2738 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
4 cply1mul.b . . . . . . . . . 10 𝐵 = (Base‘𝑃)
51, 2, 3, 4coe1mul 21351 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 × 𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘)))))))
653expb 1118 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (coe1‘(𝐹 × 𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘)))))))
76adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) → (coe1‘(𝐹 × 𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘)))))))
87adantr 480 . . . . . 6 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (coe1‘(𝐹 × 𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘)))))))
9 oveq2 7263 . . . . . . . . 9 (𝑠 = 𝑛 → (0...𝑠) = (0...𝑛))
10 fvoveq1 7278 . . . . . . . . . 10 (𝑠 = 𝑛 → ((coe1𝐺)‘(𝑠𝑘)) = ((coe1𝐺)‘(𝑛𝑘)))
1110oveq2d 7271 . . . . . . . . 9 (𝑠 = 𝑛 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘))) = (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))))
129, 11mpteq12dv 5161 . . . . . . . 8 (𝑠 = 𝑛 → (𝑘 ∈ (0...𝑠) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘)))))
1312oveq2d 7271 . . . . . . 7 (𝑠 = 𝑛 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))))))
1413adantl 481 . . . . . 6 (((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 = 𝑛) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑠𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))))))
15 nnnn0 12170 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1615adantl 481 . . . . . 6 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
17 ovexd 7290 . . . . . 6 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))))) ∈ V)
188, 14, 16, 17fvmptd 6864 . . . . 5 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → ((coe1‘(𝐹 × 𝐺))‘𝑛) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))))))
19 r19.26 3094 . . . . . . . . . 10 (∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 ) ↔ (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 ))
20 oveq2 7263 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 0 → (𝑛𝑘) = (𝑛 − 0))
21 nncn 11911 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2221subid1d 11251 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝑛 − 0) = 𝑛)
2322adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (𝑛 − 0) = 𝑛)
2420, 23sylan9eqr 2801 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (𝑛𝑘) = 𝑛)
25 simpll 763 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → 𝑛 ∈ ℕ)
2624, 25eqeltrd 2839 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (𝑛𝑘) ∈ ℕ)
27 fveqeq2 6765 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝑛𝑘) → (((coe1𝐺)‘𝑐) = 0 ↔ ((coe1𝐺)‘(𝑛𝑘)) = 0 ))
2827rspcv 3547 . . . . . . . . . . . . . . . . 17 ((𝑛𝑘) ∈ ℕ → (∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 → ((coe1𝐺)‘(𝑛𝑘)) = 0 ))
2926, 28syl 17 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 → ((coe1𝐺)‘(𝑛𝑘)) = 0 ))
30 oveq2 7263 . . . . . . . . . . . . . . . . . . . 20 (((coe1𝐺)‘(𝑛𝑘)) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = (((coe1𝐹)‘𝑘)(.r𝑅) 0 ))
31 simpll 763 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → 𝑅 ∈ Ring)
32 simprl 767 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → 𝐹𝐵)
33 elfznn0 13278 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
3433adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
3534adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → 𝑘 ∈ ℕ0)
36 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (coe1𝐹) = (coe1𝐹)
37 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (Base‘𝑅) = (Base‘𝑅)
3836, 4, 1, 37coe1fvalcl 21293 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝐵𝑘 ∈ ℕ0) → ((coe1𝐹)‘𝑘) ∈ (Base‘𝑅))
3932, 35, 38syl2an 595 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → ((coe1𝐹)‘𝑘) ∈ (Base‘𝑅))
40 cply1mul.0 . . . . . . . . . . . . . . . . . . . . . 22 0 = (0g𝑅)
4137, 3, 40ringrz 19742 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑘) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑘)(.r𝑅) 0 ) = 0 )
4231, 39, 41syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → (((coe1𝐹)‘𝑘)(.r𝑅) 0 ) = 0 )
4330, 42sylan9eqr 2801 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) ∧ ((coe1𝐺)‘(𝑛𝑘)) = 0 ) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )
4443ex 412 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → (((coe1𝐺)‘(𝑛𝑘)) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))
4544expcom 413 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐺)‘(𝑛𝑘)) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))
4645com23 86 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (((coe1𝐺)‘(𝑛𝑘)) = 0 → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))
4729, 46syldc 48 . . . . . . . . . . . . . . 15 (∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 → (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))
4847expd 415 . . . . . . . . . . . . . 14 (∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
4948com24 95 . . . . . . . . . . . . 13 (∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
5049adantl 481 . . . . . . . . . . . 12 ((∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 ) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
5150com13 88 . . . . . . . . . . 11 (𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → ((∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
52 neqne 2950 . . . . . . . . . . . . . . . . . . . . . 22 𝑘 = 0 → 𝑘 ≠ 0)
5352, 33anim12ci 613 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0𝑘 ≠ 0))
54 elnnne0 12177 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0𝑘 ≠ 0))
5553, 54sylibr 233 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ)
56 fveqeq2 6765 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = 𝑘 → (((coe1𝐹)‘𝑐) = 0 ↔ ((coe1𝐹)‘𝑘) = 0 ))
5756rspcv 3547 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → ((coe1𝐹)‘𝑘) = 0 ))
5855, 57syl 17 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → ((coe1𝐹)‘𝑘) = 0 ))
59 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((coe1𝐹)‘𝑘) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = ( 0 (.r𝑅)((coe1𝐺)‘(𝑛𝑘))))
60 simpll 763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → 𝑅 ∈ Ring)
614eleq2i 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐺𝐵𝐺 ∈ (Base‘𝑃))
6261biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐺𝐵𝐺 ∈ (Base‘𝑃))
6362adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐵𝐺𝐵) → 𝐺 ∈ (Base‘𝑃))
6463adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → 𝐺 ∈ (Base‘𝑃))
65 fznn0sub 13217 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ (0...𝑛) → (𝑛𝑘) ∈ ℕ0)
66 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (coe1𝐺) = (coe1𝐺)
67 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Base‘𝑃) = (Base‘𝑃)
6866, 67, 1, 37coe1fvalcl 21293 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐺 ∈ (Base‘𝑃) ∧ (𝑛𝑘) ∈ ℕ0) → ((coe1𝐺)‘(𝑛𝑘)) ∈ (Base‘𝑅))
6964, 65, 68syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → ((coe1𝐺)‘(𝑛𝑘)) ∈ (Base‘𝑅))
7037, 3, 40ringlz 19741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘(𝑛𝑘)) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )
7160, 69, 70syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → ( 0 (.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )
7259, 71sylan9eqr 2801 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑘 ∈ (0...𝑛)) ∧ ((coe1𝐹)‘𝑘) = 0 ) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )
7372ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))
7473ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (𝑘 ∈ (0...𝑛) → (((coe1𝐹)‘𝑘) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))
7574com23 86 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘) = 0 → (𝑘 ∈ (0...𝑛) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))
7675a1dd 50 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → (𝑘 ∈ (0...𝑛) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
7776com14 96 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...𝑛) → (((coe1𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
7877adantl 481 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
7958, 78syld 47 . . . . . . . . . . . . . . . . . 18 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
8079com24 95 . . . . . . . . . . . . . . . . 17 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (𝑛 ∈ ℕ → (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
8180ex 412 . . . . . . . . . . . . . . . 16 𝑘 = 0 → (𝑘 ∈ (0...𝑛) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (𝑛 ∈ ℕ → (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))))
8281com14 96 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑘 ∈ (0...𝑛) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (¬ 𝑘 = 0 → (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))))
8382imp 406 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (¬ 𝑘 = 0 → (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
8483com14 96 . . . . . . . . . . . . 13 (∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (¬ 𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
8584adantr 480 . . . . . . . . . . . 12 ((∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 ) → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (¬ 𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
8685com13 88 . . . . . . . . . . 11 𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → ((∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))))
8751, 86pm2.61i 182 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → ((∀𝑐 ∈ ℕ ((coe1𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ ((coe1𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))
8819, 87syl5bi 241 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )))
8988imp 406 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 ))
9089impl 455 . . . . . . 7 (((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑛)) → (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))) = 0 )
9190mpteq2dva 5170 . . . . . 6 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (0...𝑛) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ 0 ))
9291oveq2d 7271 . . . . 5 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1𝐹)‘𝑘)(.r𝑅)((coe1𝐺)‘(𝑛𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )))
93 ringmnd 19708 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
94 ovexd 7290 . . . . . . . . 9 (𝑅 ∈ Ring → (0...𝑛) ∈ V)
9540gsumz 18389 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 )
9693, 94, 95syl2anc 583 . . . . . . . 8 (𝑅 ∈ Ring → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 )
9796adantr 480 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 )
9897adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 )
9998adantr 480 . . . . 5 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 )
10018, 92, 993eqtrd 2782 . . . 4 ((((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → ((coe1‘(𝐹 × 𝐺))‘𝑛) = 0 )
101100ralrimiva 3107 . . 3 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) → ∀𝑛 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑛) = 0 )
102 fveqeq2 6765 . . . 4 (𝑐 = 𝑛 → (((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 ↔ ((coe1‘(𝐹 × 𝐺))‘𝑛) = 0 ))
103102cbvralvw 3372 . . 3 (∀𝑐 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 ↔ ∀𝑛 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑛) = 0 )
104101, 103sylibr 233 . 2 (((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) ∧ ∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 )) → ∀𝑐 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 )
105104ex 412 1 ((𝑅 ∈ Ring ∧ (𝐹𝐵𝐺𝐵)) → (∀𝑐 ∈ ℕ (((coe1𝐹)‘𝑐) = 0 ∧ ((coe1𝐺)‘𝑐) = 0 ) → ∀𝑐 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cmpt 5153  cfv 6418  (class class class)co 7255  0cc0 10802  cmin 11135  cn 11903  0cn0 12163  ...cfz 13168  Basecbs 16840  .rcmulr 16889  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  Ringcrg 19698  Poly1cpl1 21258  coe1cco1 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-psr 21022  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-ply1 21263  df-coe1 21264
This theorem is referenced by:  cpmatmcllem  21775
  Copyright terms: Public domain W3C validator