Step | Hyp | Ref
| Expression |
1 | | cply1mul.p |
. . . . . . . . . 10
⊢ 𝑃 = (Poly1‘𝑅) |
2 | | cply1mul.m |
. . . . . . . . . 10
⊢ × =
(.r‘𝑃) |
3 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
4 | | cply1mul.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑃) |
5 | 1, 2, 3, 4 | coe1mul 21351 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 × 𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))))) |
6 | 5 | 3expb 1118 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (coe1‘(𝐹 × 𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))))) |
7 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) →
(coe1‘(𝐹
×
𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))))) |
8 | 7 | adantr 480 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) →
(coe1‘(𝐹
×
𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))))) |
9 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑠 = 𝑛 → (0...𝑠) = (0...𝑛)) |
10 | | fvoveq1 7278 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑛 → ((coe1‘𝐺)‘(𝑠 − 𝑘)) = ((coe1‘𝐺)‘(𝑛 − 𝑘))) |
11 | 10 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑠 = 𝑛 → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))) = (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))) |
12 | 9, 11 | mpteq12dv 5161 |
. . . . . . . 8
⊢ (𝑠 = 𝑛 → (𝑘 ∈ (0...𝑠) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))))) |
13 | 12 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑠 = 𝑛 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))))) |
14 | 13 | adantl 481 |
. . . . . 6
⊢
(((((𝑅 ∈ Ring
∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 = 𝑛) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))))) |
15 | | nnnn0 12170 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
16 | 15 | adantl 481 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈
ℕ0) |
17 | | ovexd 7290 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))))) ∈ V) |
18 | 8, 14, 16, 17 | fvmptd 6864 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) →
((coe1‘(𝐹
×
𝐺))‘𝑛) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))))) |
19 | | r19.26 3094 |
. . . . . . . . . 10
⊢
(∀𝑐 ∈
ℕ (((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 ) ↔ (∀𝑐 ∈ ℕ
((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 )) |
20 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (𝑛 − 𝑘) = (𝑛 − 0)) |
21 | | nncn 11911 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
22 | 21 | subid1d 11251 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → (𝑛 − 0) = 𝑛) |
23 | 22 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (𝑛 − 0) = 𝑛) |
24 | 20, 23 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (𝑛 − 𝑘) = 𝑛) |
25 | | simpll 763 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → 𝑛 ∈ ℕ) |
26 | 24, 25 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (𝑛 − 𝑘) ∈ ℕ) |
27 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = (𝑛 − 𝑘) → (((coe1‘𝐺)‘𝑐) = 0 ↔
((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 )) |
28 | 27 | rspcv 3547 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 − 𝑘) ∈ ℕ → (∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 →
((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 )) |
29 | 26, 28 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (∀𝑐 ∈ ℕ ((coe1‘𝐺)‘𝑐) = 0 →
((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 )) |
30 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = (((coe1‘𝐹)‘𝑘)(.r‘𝑅) 0 )) |
31 | | simpll 763 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → 𝑅 ∈ Ring) |
32 | | simprl 767 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐹 ∈ 𝐵) |
33 | | elfznn0 13278 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
34 | 33 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0) |
35 | 34 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → 𝑘 ∈ ℕ0) |
36 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(coe1‘𝐹) = (coe1‘𝐹) |
37 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(Base‘𝑅) =
(Base‘𝑅) |
38 | 36, 4, 1, 37 | coe1fvalcl 21293 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝐹)‘𝑘) ∈ (Base‘𝑅)) |
39 | 32, 35, 38 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → ((coe1‘𝐹)‘𝑘) ∈ (Base‘𝑅)) |
40 | | cply1mul.0 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 =
(0g‘𝑅) |
41 | 37, 3, 40 | ringrz 19742 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐹)‘𝑘) ∈ (Base‘𝑅)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅) 0 ) = 0 ) |
42 | 31, 39, 41 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅) 0 ) = 0 ) |
43 | 30, 42 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) ∧ ((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 ) →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
44 | 43 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → (((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )) |
45 | 44 | expcom 413 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
46 | 45 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
47 | 29, 46 | syldc 48 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑐 ∈
ℕ ((coe1‘𝐺)‘𝑐) = 0 → (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
48 | 47 | expd 415 |
. . . . . . . . . . . . . 14
⊢
(∀𝑐 ∈
ℕ ((coe1‘𝐺)‘𝑐) = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
49 | 48 | com24 95 |
. . . . . . . . . . . . 13
⊢
(∀𝑐 ∈
ℕ ((coe1‘𝐺)‘𝑐) = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
50 | 49 | adantl 481 |
. . . . . . . . . . . 12
⊢
((∀𝑐 ∈
ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
51 | 50 | com13 88 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
52 | | neqne 2950 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑘 = 0 → 𝑘 ≠ 0) |
53 | 52, 33 | anim12ci 613 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0 ∧ 𝑘 ≠ 0)) |
54 | | elnnne0 12177 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0
∧ 𝑘 ≠
0)) |
55 | 53, 54 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ) |
56 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑘 → (((coe1‘𝐹)‘𝑐) = 0 ↔
((coe1‘𝐹)‘𝑘) = 0 )) |
57 | 56 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ →
(∀𝑐 ∈ ℕ
((coe1‘𝐹)‘𝑐) = 0 →
((coe1‘𝐹)‘𝑘) = 0 )) |
58 | 55, 57 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 →
((coe1‘𝐹)‘𝑘) = 0 )) |
59 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((coe1‘𝐹)‘𝑘) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = ( 0 (.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))) |
60 | | simpll 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → 𝑅 ∈ Ring) |
61 | 4 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐺 ∈ 𝐵 ↔ 𝐺 ∈ (Base‘𝑃)) |
62 | 61 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐺 ∈ 𝐵 → 𝐺 ∈ (Base‘𝑃)) |
63 | 62 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ (Base‘𝑃)) |
64 | 63 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐺 ∈ (Base‘𝑃)) |
65 | | fznn0sub 13217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ (0...𝑛) → (𝑛 − 𝑘) ∈
ℕ0) |
66 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(coe1‘𝐺) = (coe1‘𝐺) |
67 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(Base‘𝑃) =
(Base‘𝑃) |
68 | 66, 67, 1, 37 | coe1fvalcl 21293 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐺 ∈ (Base‘𝑃) ∧ (𝑛 − 𝑘) ∈ ℕ0) →
((coe1‘𝐺)‘(𝑛 − 𝑘)) ∈ (Base‘𝑅)) |
69 | 64, 65, 68 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → ((coe1‘𝐺)‘(𝑛 − 𝑘)) ∈ (Base‘𝑅)) |
70 | 37, 3, 40 | ringlz 19741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐺)‘(𝑛 − 𝑘)) ∈ (Base‘𝑅)) → ( 0 (.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
71 | 60, 69, 70 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → ( 0 (.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
72 | 59, 71 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) ∧ ((coe1‘𝐹)‘𝑘) = 0 ) →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
73 | 72 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )) |
74 | 73 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑘 ∈ (0...𝑛) → (((coe1‘𝐹)‘𝑘) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
75 | 74 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘) = 0 → (𝑘 ∈ (0...𝑛) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
76 | 75 | a1dd 50 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → (𝑘 ∈ (0...𝑛) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
77 | 76 | com14 96 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (0...𝑛) → (((coe1‘𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
78 | 77 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
79 | 58, 78 | syld 47 |
. . . . . . . . . . . . . . . . . 18
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
80 | 79 | com24 95 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑛 ∈ ℕ → (∀𝑐 ∈ ℕ
((coe1‘𝐹)‘𝑐) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
81 | 80 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑘 = 0 → (𝑘 ∈ (0...𝑛) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑛 ∈ ℕ → (∀𝑐 ∈ ℕ
((coe1‘𝐹)‘𝑐) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))))) |
82 | 81 | com14 96 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝑘 ∈ (0...𝑛) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (¬ 𝑘 = 0 → (∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))))) |
83 | 82 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (¬ 𝑘 = 0 → (∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
84 | 83 | com14 96 |
. . . . . . . . . . . . 13
⊢
(∀𝑐 ∈
ℕ ((coe1‘𝐹)‘𝑐) = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (¬ 𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
85 | 84 | adantr 480 |
. . . . . . . . . . . 12
⊢
((∀𝑐 ∈
ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (¬ 𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
86 | 85 | com13 88 |
. . . . . . . . . . 11
⊢ (¬
𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
87 | 51, 86 | pm2.61i 182 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
88 | 19, 87 | syl5bi 241 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
89 | 88 | imp 406 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )) |
90 | 89 | impl 455 |
. . . . . . 7
⊢
(((((𝑅 ∈ Ring
∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
91 | 90 | mpteq2dva 5170 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ 0 )) |
92 | 91 | oveq2d 7271 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 ))) |
93 | | ringmnd 19708 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
94 | | ovexd 7290 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → (0...𝑛) ∈ V) |
95 | 40 | gsumz 18389 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
96 | 93, 94, 95 | syl2anc 583 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
97 | 96 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
98 | 97 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
99 | 98 | adantr 480 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
100 | 18, 92, 99 | 3eqtrd 2782 |
. . . 4
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) →
((coe1‘(𝐹
×
𝐺))‘𝑛) = 0 ) |
101 | 100 | ralrimiva 3107 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) → ∀𝑛 ∈ ℕ
((coe1‘(𝐹
×
𝐺))‘𝑛) = 0 ) |
102 | | fveqeq2 6765 |
. . . 4
⊢ (𝑐 = 𝑛 → (((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 ↔
((coe1‘(𝐹
×
𝐺))‘𝑛) = 0 )) |
103 | 102 | cbvralvw 3372 |
. . 3
⊢
(∀𝑐 ∈
ℕ ((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 ↔ ∀𝑛 ∈ ℕ
((coe1‘(𝐹
×
𝐺))‘𝑛) = 0 ) |
104 | 101, 103 | sylibr 233 |
. 2
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) → ∀𝑐 ∈ ℕ
((coe1‘(𝐹
×
𝐺))‘𝑐) = 0 ) |
105 | 104 | ex 412 |
1
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 ) → ∀𝑐 ∈ ℕ
((coe1‘(𝐹
×
𝐺))‘𝑐) = 0 )) |