Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evengpoap3 Structured version   Visualization version   GIF version

Theorem evengpoap3 47804
Description: If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of an odd Goldbach number and 3. (Contributed by AV, 27-Jul-2020.) (Proof shortened by AV, 15-Sep-2021.)
Assertion
Ref Expression
evengpoap3 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
Distinct variable groups:   𝑚,𝑁   𝑜,𝑁

Proof of Theorem evengpoap3
StepHypRef Expression
1 3odd 47713 . . . . . . 7 3 ∈ Odd
21a1i 11 . . . . . 6 (𝑁 ∈ (ℤ12) → 3 ∈ Odd )
32anim1i 615 . . . . 5 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
43ancomd 461 . . . 4 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
5 emoo 47709 . . . 4 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) → (𝑁 − 3) ∈ Odd )
64, 5syl 17 . . 3 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈ Odd )
7 breq2 5114 . . . . 5 (𝑚 = (𝑁 − 3) → (7 < 𝑚 ↔ 7 < (𝑁 − 3)))
8 eleq1 2817 . . . . 5 (𝑚 = (𝑁 − 3) → (𝑚 ∈ GoldbachOdd ↔ (𝑁 − 3) ∈ GoldbachOdd ))
97, 8imbi12d 344 . . . 4 (𝑚 = (𝑁 − 3) → ((7 < 𝑚𝑚 ∈ GoldbachOdd ) ↔ (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
109adantl 481 . . 3 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ 𝑚 = (𝑁 − 3)) → ((7 < 𝑚𝑚 ∈ GoldbachOdd ) ↔ (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
116, 10rspcdv 3583 . 2 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
12 eluz2 12806 . . . . 5 (𝑁 ∈ (ℤ12) ↔ (12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁))
13 7p3e10 12731 . . . . . . . . . 10 (7 + 3) = 10
14 1nn0 12465 . . . . . . . . . . 11 1 ∈ ℕ0
15 0nn0 12464 . . . . . . . . . . 11 0 ∈ ℕ0
16 2nn 12266 . . . . . . . . . . 11 2 ∈ ℕ
17 2pos 12296 . . . . . . . . . . 11 0 < 2
1814, 15, 16, 17declt 12684 . . . . . . . . . 10 10 < 12
1913, 18eqbrtri 5131 . . . . . . . . 9 (7 + 3) < 12
20 7re 12286 . . . . . . . . . . 11 7 ∈ ℝ
21 3re 12273 . . . . . . . . . . 11 3 ∈ ℝ
2220, 21readdcli 11196 . . . . . . . . . 10 (7 + 3) ∈ ℝ
23 2nn0 12466 . . . . . . . . . . . 12 2 ∈ ℕ0
2414, 23deccl 12671 . . . . . . . . . . 11 12 ∈ ℕ0
2524nn0rei 12460 . . . . . . . . . 10 12 ∈ ℝ
26 zre 12540 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
27 ltletr 11273 . . . . . . . . . 10 (((7 + 3) ∈ ℝ ∧ 12 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((7 + 3) < 12 ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁))
2822, 25, 26, 27mp3an12i 1467 . . . . . . . . 9 (𝑁 ∈ ℤ → (((7 + 3) < 12 ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁))
2919, 28mpani 696 . . . . . . . 8 (𝑁 ∈ ℤ → (12 ≤ 𝑁 → (7 + 3) < 𝑁))
3029imp 406 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁)
31303adant1 1130 . . . . . 6 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁)
3220a1i 11 . . . . . . 7 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 7 ∈ ℝ)
3321a1i 11 . . . . . . 7 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 3 ∈ ℝ)
34263ad2ant2 1134 . . . . . . 7 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 𝑁 ∈ ℝ)
3532, 33, 34ltaddsubd 11785 . . . . . 6 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → ((7 + 3) < 𝑁 ↔ 7 < (𝑁 − 3)))
3631, 35mpbid 232 . . . . 5 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 7 < (𝑁 − 3))
3712, 36sylbi 217 . . . 4 (𝑁 ∈ (ℤ12) → 7 < (𝑁 − 3))
3837adantr 480 . . 3 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → 7 < (𝑁 − 3))
39 simpr 484 . . . . 5 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → (𝑁 − 3) ∈ GoldbachOdd )
40 oveq1 7397 . . . . . . 7 (𝑜 = (𝑁 − 3) → (𝑜 + 3) = ((𝑁 − 3) + 3))
4140eqeq2d 2741 . . . . . 6 (𝑜 = (𝑁 − 3) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
4241adantl 481 . . . . 5 ((((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) ∧ 𝑜 = (𝑁 − 3)) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
43 eluzelcn 12812 . . . . . . . . 9 (𝑁 ∈ (ℤ12) → 𝑁 ∈ ℂ)
44 3cn 12274 . . . . . . . . 9 3 ∈ ℂ
4543, 44jctir 520 . . . . . . . 8 (𝑁 ∈ (ℤ12) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4645adantr 480 . . . . . . 7 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4746adantr 480 . . . . . 6 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
48 npcan 11437 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑁 − 3) + 3) = 𝑁)
4948eqcomd 2736 . . . . . 6 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → 𝑁 = ((𝑁 − 3) + 3))
5047, 49syl 17 . . . . 5 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → 𝑁 = ((𝑁 − 3) + 3))
5139, 42, 50rspcedvd 3593 . . . 4 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3))
5251ex 412 . . 3 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ((𝑁 − 3) ∈ GoldbachOdd → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
5338, 52embantd 59 . 2 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ((7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
5411, 53syldc 48 1 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  2c2 12248  3c3 12249  7c7 12253  cz 12536  cdc 12656  cuz 12800   Even ceven 47629   Odd codd 47630   GoldbachOdd cgbo 47752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-even 47631  df-odd 47632
This theorem is referenced by:  nnsum4primesevenALTV  47806
  Copyright terms: Public domain W3C validator