Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evengpoap3 Structured version   Visualization version   GIF version

Theorem evengpoap3 44180
Description: If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of an odd Goldbach number and 3. (Contributed by AV, 27-Jul-2020.) (Proof shortened by AV, 15-Sep-2021.)
Assertion
Ref Expression
evengpoap3 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
Distinct variable groups:   𝑚,𝑁   𝑜,𝑁

Proof of Theorem evengpoap3
StepHypRef Expression
1 3odd 44089 . . . . . . 7 3 ∈ Odd
21a1i 11 . . . . . 6 (𝑁 ∈ (ℤ12) → 3 ∈ Odd )
32anim1i 617 . . . . 5 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
43ancomd 465 . . . 4 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
5 emoo 44085 . . . 4 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) → (𝑁 − 3) ∈ Odd )
64, 5syl 17 . . 3 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈ Odd )
7 breq2 5056 . . . . 5 (𝑚 = (𝑁 − 3) → (7 < 𝑚 ↔ 7 < (𝑁 − 3)))
8 eleq1 2903 . . . . 5 (𝑚 = (𝑁 − 3) → (𝑚 ∈ GoldbachOdd ↔ (𝑁 − 3) ∈ GoldbachOdd ))
97, 8imbi12d 348 . . . 4 (𝑚 = (𝑁 − 3) → ((7 < 𝑚𝑚 ∈ GoldbachOdd ) ↔ (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
109adantl 485 . . 3 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ 𝑚 = (𝑁 − 3)) → ((7 < 𝑚𝑚 ∈ GoldbachOdd ) ↔ (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
116, 10rspcdv 3601 . 2 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
12 eluz2 12242 . . . . 5 (𝑁 ∈ (ℤ12) ↔ (12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁))
13 7p3e10 12166 . . . . . . . . . 10 (7 + 3) = 10
14 1nn0 11906 . . . . . . . . . . 11 1 ∈ ℕ0
15 0nn0 11905 . . . . . . . . . . 11 0 ∈ ℕ0
16 2nn 11703 . . . . . . . . . . 11 2 ∈ ℕ
17 2pos 11733 . . . . . . . . . . 11 0 < 2
1814, 15, 16, 17declt 12119 . . . . . . . . . 10 10 < 12
1913, 18eqbrtri 5073 . . . . . . . . 9 (7 + 3) < 12
20 7re 11723 . . . . . . . . . . 11 7 ∈ ℝ
21 3re 11710 . . . . . . . . . . 11 3 ∈ ℝ
2220, 21readdcli 10648 . . . . . . . . . 10 (7 + 3) ∈ ℝ
23 2nn0 11907 . . . . . . . . . . . 12 2 ∈ ℕ0
2414, 23deccl 12106 . . . . . . . . . . 11 12 ∈ ℕ0
2524nn0rei 11901 . . . . . . . . . 10 12 ∈ ℝ
26 zre 11978 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
27 ltletr 10724 . . . . . . . . . 10 (((7 + 3) ∈ ℝ ∧ 12 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((7 + 3) < 12 ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁))
2822, 25, 26, 27mp3an12i 1462 . . . . . . . . 9 (𝑁 ∈ ℤ → (((7 + 3) < 12 ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁))
2919, 28mpani 695 . . . . . . . 8 (𝑁 ∈ ℤ → (12 ≤ 𝑁 → (7 + 3) < 𝑁))
3029imp 410 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁)
31303adant1 1127 . . . . . 6 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁)
3220a1i 11 . . . . . . 7 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 7 ∈ ℝ)
3321a1i 11 . . . . . . 7 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 3 ∈ ℝ)
34263ad2ant2 1131 . . . . . . 7 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 𝑁 ∈ ℝ)
3532, 33, 34ltaddsubd 11232 . . . . . 6 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → ((7 + 3) < 𝑁 ↔ 7 < (𝑁 − 3)))
3631, 35mpbid 235 . . . . 5 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 7 < (𝑁 − 3))
3712, 36sylbi 220 . . . 4 (𝑁 ∈ (ℤ12) → 7 < (𝑁 − 3))
3837adantr 484 . . 3 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → 7 < (𝑁 − 3))
39 simpr 488 . . . . 5 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → (𝑁 − 3) ∈ GoldbachOdd )
40 oveq1 7152 . . . . . . 7 (𝑜 = (𝑁 − 3) → (𝑜 + 3) = ((𝑁 − 3) + 3))
4140eqeq2d 2835 . . . . . 6 (𝑜 = (𝑁 − 3) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
4241adantl 485 . . . . 5 ((((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) ∧ 𝑜 = (𝑁 − 3)) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
43 eluzelcn 12248 . . . . . . . . 9 (𝑁 ∈ (ℤ12) → 𝑁 ∈ ℂ)
44 3cn 11711 . . . . . . . . 9 3 ∈ ℂ
4543, 44jctir 524 . . . . . . . 8 (𝑁 ∈ (ℤ12) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4645adantr 484 . . . . . . 7 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4746adantr 484 . . . . . 6 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
48 npcan 10887 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑁 − 3) + 3) = 𝑁)
4948eqcomd 2830 . . . . . 6 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → 𝑁 = ((𝑁 − 3) + 3))
5047, 49syl 17 . . . . 5 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → 𝑁 = ((𝑁 − 3) + 3))
5139, 42, 50rspcedvd 3612 . . . 4 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3))
5251ex 416 . . 3 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ((𝑁 − 3) ∈ GoldbachOdd → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
5338, 52embantd 59 . 2 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ((7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
5411, 53syldc 48 1 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3133  wrex 3134   class class class wbr 5052  cfv 6343  (class class class)co 7145  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   < clt 10667  cle 10668  cmin 10862  2c2 11685  3c3 11686  7c7 11690  cz 11974  cdc 12091  cuz 12236   Even ceven 44005   Odd codd 44006   GoldbachOdd cgbo 44128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-4 11695  df-5 11696  df-6 11697  df-7 11698  df-8 11699  df-9 11700  df-n0 11891  df-z 11975  df-dec 12092  df-uz 12237  df-even 44007  df-odd 44008
This theorem is referenced by:  nnsum4primesevenALTV  44182
  Copyright terms: Public domain W3C validator