Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evengpoap3 Structured version   Visualization version   GIF version

Theorem evengpoap3 47724
Description: If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of an odd Goldbach number and 3. (Contributed by AV, 27-Jul-2020.) (Proof shortened by AV, 15-Sep-2021.)
Assertion
Ref Expression
evengpoap3 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
Distinct variable groups:   𝑚,𝑁   𝑜,𝑁

Proof of Theorem evengpoap3
StepHypRef Expression
1 3odd 47633 . . . . . . 7 3 ∈ Odd
21a1i 11 . . . . . 6 (𝑁 ∈ (ℤ12) → 3 ∈ Odd )
32anim1i 615 . . . . 5 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
43ancomd 461 . . . 4 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
5 emoo 47629 . . . 4 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) → (𝑁 − 3) ∈ Odd )
64, 5syl 17 . . 3 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈ Odd )
7 breq2 5152 . . . . 5 (𝑚 = (𝑁 − 3) → (7 < 𝑚 ↔ 7 < (𝑁 − 3)))
8 eleq1 2827 . . . . 5 (𝑚 = (𝑁 − 3) → (𝑚 ∈ GoldbachOdd ↔ (𝑁 − 3) ∈ GoldbachOdd ))
97, 8imbi12d 344 . . . 4 (𝑚 = (𝑁 − 3) → ((7 < 𝑚𝑚 ∈ GoldbachOdd ) ↔ (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
109adantl 481 . . 3 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ 𝑚 = (𝑁 − 3)) → ((7 < 𝑚𝑚 ∈ GoldbachOdd ) ↔ (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
116, 10rspcdv 3614 . 2 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
12 eluz2 12882 . . . . 5 (𝑁 ∈ (ℤ12) ↔ (12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁))
13 7p3e10 12806 . . . . . . . . . 10 (7 + 3) = 10
14 1nn0 12540 . . . . . . . . . . 11 1 ∈ ℕ0
15 0nn0 12539 . . . . . . . . . . 11 0 ∈ ℕ0
16 2nn 12337 . . . . . . . . . . 11 2 ∈ ℕ
17 2pos 12367 . . . . . . . . . . 11 0 < 2
1814, 15, 16, 17declt 12759 . . . . . . . . . 10 10 < 12
1913, 18eqbrtri 5169 . . . . . . . . 9 (7 + 3) < 12
20 7re 12357 . . . . . . . . . . 11 7 ∈ ℝ
21 3re 12344 . . . . . . . . . . 11 3 ∈ ℝ
2220, 21readdcli 11274 . . . . . . . . . 10 (7 + 3) ∈ ℝ
23 2nn0 12541 . . . . . . . . . . . 12 2 ∈ ℕ0
2414, 23deccl 12746 . . . . . . . . . . 11 12 ∈ ℕ0
2524nn0rei 12535 . . . . . . . . . 10 12 ∈ ℝ
26 zre 12615 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
27 ltletr 11351 . . . . . . . . . 10 (((7 + 3) ∈ ℝ ∧ 12 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((7 + 3) < 12 ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁))
2822, 25, 26, 27mp3an12i 1464 . . . . . . . . 9 (𝑁 ∈ ℤ → (((7 + 3) < 12 ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁))
2919, 28mpani 696 . . . . . . . 8 (𝑁 ∈ ℤ → (12 ≤ 𝑁 → (7 + 3) < 𝑁))
3029imp 406 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁)
31303adant1 1129 . . . . . 6 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁)
3220a1i 11 . . . . . . 7 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 7 ∈ ℝ)
3321a1i 11 . . . . . . 7 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 3 ∈ ℝ)
34263ad2ant2 1133 . . . . . . 7 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 𝑁 ∈ ℝ)
3532, 33, 34ltaddsubd 11861 . . . . . 6 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → ((7 + 3) < 𝑁 ↔ 7 < (𝑁 − 3)))
3631, 35mpbid 232 . . . . 5 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 7 < (𝑁 − 3))
3712, 36sylbi 217 . . . 4 (𝑁 ∈ (ℤ12) → 7 < (𝑁 − 3))
3837adantr 480 . . 3 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → 7 < (𝑁 − 3))
39 simpr 484 . . . . 5 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → (𝑁 − 3) ∈ GoldbachOdd )
40 oveq1 7438 . . . . . . 7 (𝑜 = (𝑁 − 3) → (𝑜 + 3) = ((𝑁 − 3) + 3))
4140eqeq2d 2746 . . . . . 6 (𝑜 = (𝑁 − 3) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
4241adantl 481 . . . . 5 ((((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) ∧ 𝑜 = (𝑁 − 3)) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
43 eluzelcn 12888 . . . . . . . . 9 (𝑁 ∈ (ℤ12) → 𝑁 ∈ ℂ)
44 3cn 12345 . . . . . . . . 9 3 ∈ ℂ
4543, 44jctir 520 . . . . . . . 8 (𝑁 ∈ (ℤ12) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4645adantr 480 . . . . . . 7 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4746adantr 480 . . . . . 6 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
48 npcan 11515 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑁 − 3) + 3) = 𝑁)
4948eqcomd 2741 . . . . . 6 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → 𝑁 = ((𝑁 − 3) + 3))
5047, 49syl 17 . . . . 5 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → 𝑁 = ((𝑁 − 3) + 3))
5139, 42, 50rspcedvd 3624 . . . 4 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3))
5251ex 412 . . 3 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ((𝑁 − 3) ∈ GoldbachOdd → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
5338, 52embantd 59 . 2 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ((7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
5411, 53syldc 48 1 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  2c2 12319  3c3 12320  7c7 12324  cz 12611  cdc 12731  cuz 12876   Even ceven 47549   Odd codd 47550   GoldbachOdd cgbo 47672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-even 47551  df-odd 47552
This theorem is referenced by:  nnsum4primesevenALTV  47726
  Copyright terms: Public domain W3C validator