Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flnn0div2ge Structured version   Visualization version   GIF version

Theorem flnn0div2ge 45848
Description: The floor of a positive integer divided by 2 is greater than or equal to the integer decreased by 1 and then divided by 2. (Contributed by AV, 1-Jun-2020.)
Assertion
Ref Expression
flnn0div2ge (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))

Proof of Theorem flnn0div2ge
StepHypRef Expression
1 nn0eo 45843 . 2 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0))
2 nn0re 12242 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3 peano2rem 11288 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
42, 3syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℝ)
54adantl 482 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 − 1) ∈ ℝ)
62adantl 482 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
7 2rp 12734 . . . . . . 7 2 ∈ ℝ+
87a1i 11 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → 2 ∈ ℝ+)
92lem1d 11908 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ≤ 𝑁)
109adantl 482 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 − 1) ≤ 𝑁)
115, 6, 8, 10lediv1dd 12829 . . . . 5 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
12 nn0z 12343 . . . . . . 7 ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℤ)
13 flid 13526 . . . . . . 7 ((𝑁 / 2) ∈ ℤ → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1412, 13syl 17 . . . . . 6 ((𝑁 / 2) ∈ ℕ0 → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1514adantr 481 . . . . 5 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1611, 15breqtrrd 5107 . . . 4 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
1716ex 413 . . 3 ((𝑁 / 2) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
18 nn0o 16090 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
1918ex 413 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ0))
20 nn0z 12343 . . . . . . . 8 (((𝑁 − 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℤ)
2120adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℤ)
22 flid 13526 . . . . . . 7 (((𝑁 − 1) / 2) ∈ ℤ → (⌊‘((𝑁 − 1) / 2)) = ((𝑁 − 1) / 2))
2321, 22syl 17 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (⌊‘((𝑁 − 1) / 2)) = ((𝑁 − 1) / 2))
244rehalfcld 12220 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℝ)
2524adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℝ)
262rehalfcld 12220 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 / 2) ∈ ℝ)
2726adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (𝑁 / 2) ∈ ℝ)
28 2re 12047 . . . . . . . . . . . 12 2 ∈ ℝ
29 2pos 12076 . . . . . . . . . . . 12 0 < 2
3028, 29pm3.2i 471 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
3130a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (2 ∈ ℝ ∧ 0 < 2))
32 lediv1 11840 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 − 1) ≤ 𝑁 ↔ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)))
334, 2, 31, 32syl3anc 1370 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 − 1) ≤ 𝑁 ↔ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)))
349, 33mpbid 231 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
3534adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
36 flwordi 13530 . . . . . . 7 ((((𝑁 − 1) / 2) ∈ ℝ ∧ (𝑁 / 2) ∈ ℝ ∧ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)) → (⌊‘((𝑁 − 1) / 2)) ≤ (⌊‘(𝑁 / 2)))
3725, 27, 35, 36syl3anc 1370 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (⌊‘((𝑁 − 1) / 2)) ≤ (⌊‘(𝑁 / 2)))
3823, 37eqbrtrrd 5103 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
3938ex 413 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 − 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
4019, 39syldc 48 . . 3 (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
4117, 40jaoi 854 . 2 (((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
421, 41mpcom 38 1 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1542  wcel 2110   class class class wbr 5079  cfv 6432  (class class class)co 7271  cr 10871  0cc0 10872  1c1 10873   + caddc 10875   < clt 11010  cle 11011  cmin 11205   / cdiv 11632  2c2 12028  0cn0 12233  cz 12319  +crp 12729  cfl 13508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-fl 13510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator