Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flnn0div2ge Structured version   Visualization version   GIF version

Theorem flnn0div2ge 45506
Description: The floor of a positive integer divided by 2 is greater than or equal to the integer decreased by 1 and then divided by 2. (Contributed by AV, 1-Jun-2020.)
Assertion
Ref Expression
flnn0div2ge (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))

Proof of Theorem flnn0div2ge
StepHypRef Expression
1 nn0eo 45501 . 2 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0))
2 nn0re 12082 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3 peano2rem 11128 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
42, 3syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℝ)
54adantl 485 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 − 1) ∈ ℝ)
62adantl 485 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
7 2rp 12574 . . . . . . 7 2 ∈ ℝ+
87a1i 11 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → 2 ∈ ℝ+)
92lem1d 11748 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ≤ 𝑁)
109adantl 485 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 − 1) ≤ 𝑁)
115, 6, 8, 10lediv1dd 12669 . . . . 5 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
12 nn0z 12183 . . . . . . 7 ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℤ)
13 flid 13366 . . . . . . 7 ((𝑁 / 2) ∈ ℤ → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1412, 13syl 17 . . . . . 6 ((𝑁 / 2) ∈ ℕ0 → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1514adantr 484 . . . . 5 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1611, 15breqtrrd 5071 . . . 4 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
1716ex 416 . . 3 ((𝑁 / 2) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
18 nn0o 15925 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
1918ex 416 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ0))
20 nn0z 12183 . . . . . . . 8 (((𝑁 − 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℤ)
2120adantl 485 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℤ)
22 flid 13366 . . . . . . 7 (((𝑁 − 1) / 2) ∈ ℤ → (⌊‘((𝑁 − 1) / 2)) = ((𝑁 − 1) / 2))
2321, 22syl 17 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (⌊‘((𝑁 − 1) / 2)) = ((𝑁 − 1) / 2))
244rehalfcld 12060 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℝ)
2524adantr 484 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℝ)
262rehalfcld 12060 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 / 2) ∈ ℝ)
2726adantr 484 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (𝑁 / 2) ∈ ℝ)
28 2re 11887 . . . . . . . . . . . 12 2 ∈ ℝ
29 2pos 11916 . . . . . . . . . . . 12 0 < 2
3028, 29pm3.2i 474 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
3130a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (2 ∈ ℝ ∧ 0 < 2))
32 lediv1 11680 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 − 1) ≤ 𝑁 ↔ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)))
334, 2, 31, 32syl3anc 1373 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 − 1) ≤ 𝑁 ↔ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)))
349, 33mpbid 235 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
3534adantr 484 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
36 flwordi 13370 . . . . . . 7 ((((𝑁 − 1) / 2) ∈ ℝ ∧ (𝑁 / 2) ∈ ℝ ∧ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)) → (⌊‘((𝑁 − 1) / 2)) ≤ (⌊‘(𝑁 / 2)))
3725, 27, 35, 36syl3anc 1373 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (⌊‘((𝑁 − 1) / 2)) ≤ (⌊‘(𝑁 / 2)))
3823, 37eqbrtrrd 5067 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
3938ex 416 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 − 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
4019, 39syldc 48 . . 3 (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
4117, 40jaoi 857 . 2 (((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
421, 41mpcom 38 1 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110   class class class wbr 5043  cfv 6369  (class class class)co 7202  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   < clt 10850  cle 10851  cmin 11045   / cdiv 11472  2c2 11868  0cn0 12073  cz 12159  +crp 12569  cfl 13348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fl 13350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator