Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flnn0div2ge Structured version   Visualization version   GIF version

Theorem flnn0div2ge 46609
Description: The floor of a positive integer divided by 2 is greater than or equal to the integer decreased by 1 and then divided by 2. (Contributed by AV, 1-Jun-2020.)
Assertion
Ref Expression
flnn0div2ge (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))

Proof of Theorem flnn0div2ge
StepHypRef Expression
1 nn0eo 46604 . 2 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0))
2 nn0re 12422 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3 peano2rem 11468 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
42, 3syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℝ)
54adantl 482 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 − 1) ∈ ℝ)
62adantl 482 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
7 2rp 12920 . . . . . . 7 2 ∈ ℝ+
87a1i 11 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → 2 ∈ ℝ+)
92lem1d 12088 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ≤ 𝑁)
109adantl 482 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 − 1) ≤ 𝑁)
115, 6, 8, 10lediv1dd 13015 . . . . 5 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
12 nn0z 12524 . . . . . . 7 ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℤ)
13 flid 13713 . . . . . . 7 ((𝑁 / 2) ∈ ℤ → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1412, 13syl 17 . . . . . 6 ((𝑁 / 2) ∈ ℕ0 → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1514adantr 481 . . . . 5 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1611, 15breqtrrd 5133 . . . 4 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
1716ex 413 . . 3 ((𝑁 / 2) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
18 nn0o 16265 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
1918ex 413 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ0))
20 nn0z 12524 . . . . . . . 8 (((𝑁 − 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℤ)
2120adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℤ)
22 flid 13713 . . . . . . 7 (((𝑁 − 1) / 2) ∈ ℤ → (⌊‘((𝑁 − 1) / 2)) = ((𝑁 − 1) / 2))
2321, 22syl 17 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (⌊‘((𝑁 − 1) / 2)) = ((𝑁 − 1) / 2))
244rehalfcld 12400 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℝ)
2524adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℝ)
262rehalfcld 12400 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 / 2) ∈ ℝ)
2726adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (𝑁 / 2) ∈ ℝ)
28 2re 12227 . . . . . . . . . . . 12 2 ∈ ℝ
29 2pos 12256 . . . . . . . . . . . 12 0 < 2
3028, 29pm3.2i 471 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
3130a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (2 ∈ ℝ ∧ 0 < 2))
32 lediv1 12020 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 − 1) ≤ 𝑁 ↔ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)))
334, 2, 31, 32syl3anc 1371 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 − 1) ≤ 𝑁 ↔ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)))
349, 33mpbid 231 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
3534adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
36 flwordi 13717 . . . . . . 7 ((((𝑁 − 1) / 2) ∈ ℝ ∧ (𝑁 / 2) ∈ ℝ ∧ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)) → (⌊‘((𝑁 − 1) / 2)) ≤ (⌊‘(𝑁 / 2)))
3725, 27, 35, 36syl3anc 1371 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (⌊‘((𝑁 − 1) / 2)) ≤ (⌊‘(𝑁 / 2)))
3823, 37eqbrtrrd 5129 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
3938ex 413 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 − 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
4019, 39syldc 48 . . 3 (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
4117, 40jaoi 855 . 2 (((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
421, 41mpcom 38 1 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  2c2 12208  0cn0 12413  cz 12499  +crp 12915  cfl 13695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fl 13697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator