Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flnn0div2ge Structured version   Visualization version   GIF version

Theorem flnn0div2ge 47306
Description: The floor of a positive integer divided by 2 is greater than or equal to the integer decreased by 1 and then divided by 2. (Contributed by AV, 1-Jun-2020.)
Assertion
Ref Expression
flnn0div2ge (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))

Proof of Theorem flnn0div2ge
StepHypRef Expression
1 nn0eo 47301 . 2 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0))
2 nn0re 12485 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3 peano2rem 11531 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
42, 3syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℝ)
54adantl 480 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 − 1) ∈ ℝ)
62adantl 480 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
7 2rp 12983 . . . . . . 7 2 ∈ ℝ+
87a1i 11 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → 2 ∈ ℝ+)
92lem1d 12151 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ≤ 𝑁)
109adantl 480 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 − 1) ≤ 𝑁)
115, 6, 8, 10lediv1dd 13078 . . . . 5 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
12 nn0z 12587 . . . . . . 7 ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℤ)
13 flid 13777 . . . . . . 7 ((𝑁 / 2) ∈ ℤ → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1412, 13syl 17 . . . . . 6 ((𝑁 / 2) ∈ ℕ0 → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1514adantr 479 . . . . 5 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1611, 15breqtrrd 5175 . . . 4 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
1716ex 411 . . 3 ((𝑁 / 2) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
18 nn0o 16330 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
1918ex 411 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ0))
20 nn0z 12587 . . . . . . . 8 (((𝑁 − 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℤ)
2120adantl 480 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℤ)
22 flid 13777 . . . . . . 7 (((𝑁 − 1) / 2) ∈ ℤ → (⌊‘((𝑁 − 1) / 2)) = ((𝑁 − 1) / 2))
2321, 22syl 17 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (⌊‘((𝑁 − 1) / 2)) = ((𝑁 − 1) / 2))
244rehalfcld 12463 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℝ)
2524adantr 479 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℝ)
262rehalfcld 12463 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 / 2) ∈ ℝ)
2726adantr 479 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (𝑁 / 2) ∈ ℝ)
28 2re 12290 . . . . . . . . . . . 12 2 ∈ ℝ
29 2pos 12319 . . . . . . . . . . . 12 0 < 2
3028, 29pm3.2i 469 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
3130a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (2 ∈ ℝ ∧ 0 < 2))
32 lediv1 12083 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 − 1) ≤ 𝑁 ↔ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)))
334, 2, 31, 32syl3anc 1369 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 − 1) ≤ 𝑁 ↔ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)))
349, 33mpbid 231 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
3534adantr 479 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
36 flwordi 13781 . . . . . . 7 ((((𝑁 − 1) / 2) ∈ ℝ ∧ (𝑁 / 2) ∈ ℝ ∧ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)) → (⌊‘((𝑁 − 1) / 2)) ≤ (⌊‘(𝑁 / 2)))
3725, 27, 35, 36syl3anc 1369 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (⌊‘((𝑁 − 1) / 2)) ≤ (⌊‘(𝑁 / 2)))
3823, 37eqbrtrrd 5171 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
3938ex 411 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 − 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
4019, 39syldc 48 . . 3 (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
4117, 40jaoi 853 . 2 (((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
421, 41mpcom 38 1 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 843   = wceq 1539  wcel 2104   class class class wbr 5147  cfv 6542  (class class class)co 7411  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cmin 11448   / cdiv 11875  2c2 12271  0cn0 12476  cz 12562  +crp 12978  cfl 13759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-fl 13761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator