MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncoprmlnprm Structured version   Visualization version   GIF version

Theorem ncoprmlnprm 16360
Description: If two positive integers are not coprime, the larger of them is not a prime number. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmlnprm ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) → 𝐵 ∉ ℙ))

Proof of Theorem ncoprmlnprm
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ncoprmgcdgt1b 16284 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ 1 < (𝐴 gcd 𝐵)))
21bicomd 222 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (1 < (𝐴 gcd 𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
323adant3 1130 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
4 simp1 1134 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ)
5 eluzelz 12521 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℤ)
64, 5anim12ci 613 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ))
7 dvdsle 15947 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑖𝐴𝑖𝐴))
86, 7syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖𝐴))
9 nnre 11910 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
10 nnre 11910 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
11 eluzelre 12522 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℝ)
129, 10, 113anim123i 1149 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ))
13 3anrot 1098 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ))
1412, 13sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
15 lelttr 10996 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑖𝐴𝐴 < 𝐵) → 𝑖 < 𝐵))
1614, 15syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → ((𝑖𝐴𝐴 < 𝐵) → 𝑖 < 𝐵))
1716expcomd 416 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝐴 < 𝐵 → (𝑖𝐴𝑖 < 𝐵)))
18173exp 1117 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝑖 ∈ (ℤ‘2) → (𝐴 < 𝐵 → (𝑖𝐴𝑖 < 𝐵)))))
1918com34 91 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 < 𝐵 → (𝑖 ∈ (ℤ‘2) → (𝑖𝐴𝑖 < 𝐵)))))
20193imp1 1345 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖 < 𝐵))
2120imp 406 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → 𝑖 < 𝐵)
22 nnz 12272 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
23223ad2ant2 1132 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ)
2423, 5anim12ci 613 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ))
2524adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → (𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ))
26 zltlem1 12303 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑖 < 𝐵𝑖 ≤ (𝐵 − 1)))
2725, 26syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → (𝑖 < 𝐵𝑖 ≤ (𝐵 − 1)))
2821, 27mpbid 231 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → 𝑖 ≤ (𝐵 − 1))
2928ex 412 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖 ≤ (𝐵 − 1)))
308, 29syldc 48 . . . . . . . . . 10 (𝑖𝐴 → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → 𝑖 ≤ (𝐵 − 1)))
3130adantr 480 . . . . . . . . 9 ((𝑖𝐴𝑖𝐵) → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → 𝑖 ≤ (𝐵 − 1)))
3231impcom 407 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ≤ (𝐵 − 1))
33 peano2zm 12293 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
3422, 33syl 17 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (𝐵 − 1) ∈ ℤ)
35343ad2ant2 1132 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ ℤ)
3635anim1ci 615 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ))
3736adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ))
38 elfz5 13177 . . . . . . . . 9 ((𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ) → (𝑖 ∈ (2...(𝐵 − 1)) ↔ 𝑖 ≤ (𝐵 − 1)))
3937, 38syl 17 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∈ (2...(𝐵 − 1)) ↔ 𝑖 ≤ (𝐵 − 1)))
4032, 39mpbird 256 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ (2...(𝐵 − 1)))
41 breq1 5073 . . . . . . . 8 (𝑗 = 𝑖 → (𝑗𝐵𝑖𝐵))
4241adantl 481 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) ∧ 𝑗 = 𝑖) → (𝑗𝐵𝑖𝐵))
43 simprr 769 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖𝐵)
4440, 42, 43rspcedvd 3555 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
45 rexnal 3165 . . . . . . 7 (∃𝑗 ∈ (2...(𝐵 − 1)) ¬ ¬ 𝑗𝐵 ↔ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵)
46 notnotb 314 . . . . . . . . 9 (𝑗𝐵 ↔ ¬ ¬ 𝑗𝐵)
4746bicomi 223 . . . . . . . 8 (¬ ¬ 𝑗𝐵𝑗𝐵)
4847rexbii 3177 . . . . . . 7 (∃𝑗 ∈ (2...(𝐵 − 1)) ¬ ¬ 𝑗𝐵 ↔ ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
4945, 48bitr3i 276 . . . . . 6 (¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵 ↔ ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
5044, 49sylibr 233 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵)
5150olcd 870 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
52 df-nel 3049 . . . . 5 (𝐵 ∉ ℙ ↔ ¬ 𝐵 ∈ ℙ)
53 ianor 978 . . . . . 6 (¬ (𝐵 ∈ (ℤ‘2) ∧ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵) ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
54 isprm3 16316 . . . . . 6 (𝐵 ∈ ℙ ↔ (𝐵 ∈ (ℤ‘2) ∧ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5553, 54xchnxbir 332 . . . . 5 𝐵 ∈ ℙ ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5652, 55bitri 274 . . . 4 (𝐵 ∉ ℙ ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5751, 56sylibr 233 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝐵 ∉ ℙ)
5857rexlimdva2 3215 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) → 𝐵 ∉ ℙ))
593, 58sylbid 239 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) → 𝐵 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085  wcel 2108  wnel 3048  wral 3063  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  cz 12249  cuz 12511  ...cfz 13168  cdvds 15891   gcd cgcd 16129  cprime 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305
This theorem is referenced by:  prmgaplem7  16686
  Copyright terms: Public domain W3C validator