MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncoprmlnprm Structured version   Visualization version   GIF version

Theorem ncoprmlnprm 16775
Description: If two positive integers are not coprime, the larger of them is not a prime number. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmlnprm ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) → 𝐵 ∉ ℙ))

Proof of Theorem ncoprmlnprm
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ncoprmgcdgt1b 16698 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ 1 < (𝐴 gcd 𝐵)))
21bicomd 223 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (1 < (𝐴 gcd 𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
323adant3 1132 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
4 simp1 1136 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ)
5 eluzelz 12913 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℤ)
64, 5anim12ci 613 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ))
7 dvdsle 16358 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑖𝐴𝑖𝐴))
86, 7syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖𝐴))
9 nnre 12300 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
10 nnre 12300 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
11 eluzelre 12914 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℝ)
129, 10, 113anim123i 1151 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ))
13 3anrot 1100 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ))
1412, 13sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
15 lelttr 11380 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑖𝐴𝐴 < 𝐵) → 𝑖 < 𝐵))
1614, 15syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → ((𝑖𝐴𝐴 < 𝐵) → 𝑖 < 𝐵))
1716expcomd 416 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝐴 < 𝐵 → (𝑖𝐴𝑖 < 𝐵)))
18173exp 1119 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝑖 ∈ (ℤ‘2) → (𝐴 < 𝐵 → (𝑖𝐴𝑖 < 𝐵)))))
1918com34 91 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 < 𝐵 → (𝑖 ∈ (ℤ‘2) → (𝑖𝐴𝑖 < 𝐵)))))
20193imp1 1347 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖 < 𝐵))
2120imp 406 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → 𝑖 < 𝐵)
22 nnz 12660 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
23223ad2ant2 1134 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ)
2423, 5anim12ci 613 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ))
2524adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → (𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ))
26 zltlem1 12696 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑖 < 𝐵𝑖 ≤ (𝐵 − 1)))
2725, 26syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → (𝑖 < 𝐵𝑖 ≤ (𝐵 − 1)))
2821, 27mpbid 232 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → 𝑖 ≤ (𝐵 − 1))
2928ex 412 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖 ≤ (𝐵 − 1)))
308, 29syldc 48 . . . . . . . . . 10 (𝑖𝐴 → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → 𝑖 ≤ (𝐵 − 1)))
3130adantr 480 . . . . . . . . 9 ((𝑖𝐴𝑖𝐵) → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → 𝑖 ≤ (𝐵 − 1)))
3231impcom 407 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ≤ (𝐵 − 1))
33 peano2zm 12686 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
3422, 33syl 17 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (𝐵 − 1) ∈ ℤ)
35343ad2ant2 1134 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ ℤ)
3635anim1ci 615 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ))
3736adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ))
38 elfz5 13576 . . . . . . . . 9 ((𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ) → (𝑖 ∈ (2...(𝐵 − 1)) ↔ 𝑖 ≤ (𝐵 − 1)))
3937, 38syl 17 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∈ (2...(𝐵 − 1)) ↔ 𝑖 ≤ (𝐵 − 1)))
4032, 39mpbird 257 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ (2...(𝐵 − 1)))
41 breq1 5169 . . . . . . . 8 (𝑗 = 𝑖 → (𝑗𝐵𝑖𝐵))
4241adantl 481 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) ∧ 𝑗 = 𝑖) → (𝑗𝐵𝑖𝐵))
43 simprr 772 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖𝐵)
4440, 42, 43rspcedvd 3637 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
45 rexnal 3106 . . . . . . 7 (∃𝑗 ∈ (2...(𝐵 − 1)) ¬ ¬ 𝑗𝐵 ↔ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵)
46 notnotb 315 . . . . . . . . 9 (𝑗𝐵 ↔ ¬ ¬ 𝑗𝐵)
4746bicomi 224 . . . . . . . 8 (¬ ¬ 𝑗𝐵𝑗𝐵)
4847rexbii 3100 . . . . . . 7 (∃𝑗 ∈ (2...(𝐵 − 1)) ¬ ¬ 𝑗𝐵 ↔ ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
4945, 48bitr3i 277 . . . . . 6 (¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵 ↔ ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
5044, 49sylibr 234 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵)
5150olcd 873 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
52 df-nel 3053 . . . . 5 (𝐵 ∉ ℙ ↔ ¬ 𝐵 ∈ ℙ)
53 ianor 982 . . . . . 6 (¬ (𝐵 ∈ (ℤ‘2) ∧ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵) ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
54 isprm3 16730 . . . . . 6 (𝐵 ∈ ℙ ↔ (𝐵 ∈ (ℤ‘2) ∧ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5553, 54xchnxbir 333 . . . . 5 𝐵 ∈ ℙ ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5652, 55bitri 275 . . . 4 (𝐵 ∉ ℙ ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5751, 56sylibr 234 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝐵 ∉ ℙ)
5857rexlimdva2 3163 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) → 𝐵 ∉ ℙ))
593, 58sylbid 240 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) → 𝐵 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087  wcel 2108  wnel 3052  wral 3067  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  1c1 11185   < clt 11324  cle 11325  cmin 11520  cn 12293  2c2 12348  cz 12639  cuz 12903  ...cfz 13567  cdvds 16302   gcd cgcd 16540  cprime 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719
This theorem is referenced by:  prmgaplem7  17104
  Copyright terms: Public domain W3C validator