MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncoprmlnprm Structured version   Visualization version   GIF version

Theorem ncoprmlnprm 16765
Description: If two positive integers are not coprime, the larger of them is not a prime number. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmlnprm ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) → 𝐵 ∉ ℙ))

Proof of Theorem ncoprmlnprm
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ncoprmgcdgt1b 16688 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ 1 < (𝐴 gcd 𝐵)))
21bicomd 223 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (1 < (𝐴 gcd 𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
323adant3 1133 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
4 simp1 1137 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ)
5 eluzelz 12888 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℤ)
64, 5anim12ci 614 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ))
7 dvdsle 16347 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑖𝐴𝑖𝐴))
86, 7syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖𝐴))
9 nnre 12273 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
10 nnre 12273 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
11 eluzelre 12889 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℝ)
129, 10, 113anim123i 1152 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ))
13 3anrot 1100 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ))
1412, 13sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
15 lelttr 11351 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑖𝐴𝐴 < 𝐵) → 𝑖 < 𝐵))
1614, 15syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → ((𝑖𝐴𝐴 < 𝐵) → 𝑖 < 𝐵))
1716expcomd 416 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝐴 < 𝐵 → (𝑖𝐴𝑖 < 𝐵)))
18173exp 1120 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝑖 ∈ (ℤ‘2) → (𝐴 < 𝐵 → (𝑖𝐴𝑖 < 𝐵)))))
1918com34 91 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 < 𝐵 → (𝑖 ∈ (ℤ‘2) → (𝑖𝐴𝑖 < 𝐵)))))
20193imp1 1348 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖 < 𝐵))
2120imp 406 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → 𝑖 < 𝐵)
22 nnz 12634 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
23223ad2ant2 1135 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ)
2423, 5anim12ci 614 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ))
2524adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → (𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ))
26 zltlem1 12670 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑖 < 𝐵𝑖 ≤ (𝐵 − 1)))
2725, 26syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → (𝑖 < 𝐵𝑖 ≤ (𝐵 − 1)))
2821, 27mpbid 232 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → 𝑖 ≤ (𝐵 − 1))
2928ex 412 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖 ≤ (𝐵 − 1)))
308, 29syldc 48 . . . . . . . . . 10 (𝑖𝐴 → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → 𝑖 ≤ (𝐵 − 1)))
3130adantr 480 . . . . . . . . 9 ((𝑖𝐴𝑖𝐵) → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → 𝑖 ≤ (𝐵 − 1)))
3231impcom 407 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ≤ (𝐵 − 1))
33 peano2zm 12660 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
3422, 33syl 17 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (𝐵 − 1) ∈ ℤ)
35343ad2ant2 1135 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ ℤ)
3635anim1ci 616 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ))
3736adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ))
38 elfz5 13556 . . . . . . . . 9 ((𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ) → (𝑖 ∈ (2...(𝐵 − 1)) ↔ 𝑖 ≤ (𝐵 − 1)))
3937, 38syl 17 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∈ (2...(𝐵 − 1)) ↔ 𝑖 ≤ (𝐵 − 1)))
4032, 39mpbird 257 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ (2...(𝐵 − 1)))
41 breq1 5146 . . . . . . . 8 (𝑗 = 𝑖 → (𝑗𝐵𝑖𝐵))
4241adantl 481 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) ∧ 𝑗 = 𝑖) → (𝑗𝐵𝑖𝐵))
43 simprr 773 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖𝐵)
4440, 42, 43rspcedvd 3624 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
45 rexnal 3100 . . . . . . 7 (∃𝑗 ∈ (2...(𝐵 − 1)) ¬ ¬ 𝑗𝐵 ↔ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵)
46 notnotb 315 . . . . . . . . 9 (𝑗𝐵 ↔ ¬ ¬ 𝑗𝐵)
4746bicomi 224 . . . . . . . 8 (¬ ¬ 𝑗𝐵𝑗𝐵)
4847rexbii 3094 . . . . . . 7 (∃𝑗 ∈ (2...(𝐵 − 1)) ¬ ¬ 𝑗𝐵 ↔ ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
4945, 48bitr3i 277 . . . . . 6 (¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵 ↔ ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
5044, 49sylibr 234 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵)
5150olcd 875 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
52 df-nel 3047 . . . . 5 (𝐵 ∉ ℙ ↔ ¬ 𝐵 ∈ ℙ)
53 ianor 984 . . . . . 6 (¬ (𝐵 ∈ (ℤ‘2) ∧ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵) ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
54 isprm3 16720 . . . . . 6 (𝐵 ∈ ℙ ↔ (𝐵 ∈ (ℤ‘2) ∧ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5553, 54xchnxbir 333 . . . . 5 𝐵 ∈ ℙ ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5652, 55bitri 275 . . . 4 (𝐵 ∉ ℙ ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5751, 56sylibr 234 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝐵 ∉ ℙ)
5857rexlimdva2 3157 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) → 𝐵 ∉ ℙ))
593, 58sylbid 240 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) → 𝐵 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087  wcel 2108  wnel 3046  wral 3061  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156   < clt 11295  cle 11296  cmin 11492  cn 12266  2c2 12321  cz 12613  cuz 12878  ...cfz 13547  cdvds 16290   gcd cgcd 16531  cprime 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709
This theorem is referenced by:  prmgaplem7  17095
  Copyright terms: Public domain W3C validator