MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncoprmlnprm Structured version   Visualization version   GIF version

Theorem ncoprmlnprm 16639
Description: If two positive integers are not coprime, the larger of them is not a prime number. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmlnprm ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) → 𝐵 ∉ ℙ))

Proof of Theorem ncoprmlnprm
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ncoprmgcdgt1b 16562 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ 1 < (𝐴 gcd 𝐵)))
21bicomd 223 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (1 < (𝐴 gcd 𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
323adant3 1132 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
4 simp1 1136 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ)
5 eluzelz 12745 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℤ)
64, 5anim12ci 614 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ))
7 dvdsle 16221 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑖𝐴𝑖𝐴))
86, 7syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖𝐴))
9 nnre 12135 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
10 nnre 12135 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
11 eluzelre 12746 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℝ)
129, 10, 113anim123i 1151 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ))
13 3anrot 1099 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ))
1412, 13sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
15 lelttr 11206 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑖𝐴𝐴 < 𝐵) → 𝑖 < 𝐵))
1614, 15syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → ((𝑖𝐴𝐴 < 𝐵) → 𝑖 < 𝐵))
1716expcomd 416 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝐴 < 𝐵 → (𝑖𝐴𝑖 < 𝐵)))
18173exp 1119 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝑖 ∈ (ℤ‘2) → (𝐴 < 𝐵 → (𝑖𝐴𝑖 < 𝐵)))))
1918com34 91 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 < 𝐵 → (𝑖 ∈ (ℤ‘2) → (𝑖𝐴𝑖 < 𝐵)))))
20193imp1 1348 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖 < 𝐵))
2120imp 406 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → 𝑖 < 𝐵)
22 nnz 12492 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
23223ad2ant2 1134 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ)
2423, 5anim12ci 614 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ))
2524adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → (𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ))
26 zltlem1 12528 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑖 < 𝐵𝑖 ≤ (𝐵 − 1)))
2725, 26syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → (𝑖 < 𝐵𝑖 ≤ (𝐵 − 1)))
2821, 27mpbid 232 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → 𝑖 ≤ (𝐵 − 1))
2928ex 412 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖 ≤ (𝐵 − 1)))
308, 29syldc 48 . . . . . . . . . 10 (𝑖𝐴 → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → 𝑖 ≤ (𝐵 − 1)))
3130adantr 480 . . . . . . . . 9 ((𝑖𝐴𝑖𝐵) → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → 𝑖 ≤ (𝐵 − 1)))
3231impcom 407 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ≤ (𝐵 − 1))
33 peano2zm 12518 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
3422, 33syl 17 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (𝐵 − 1) ∈ ℤ)
35343ad2ant2 1134 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ ℤ)
3635anim1ci 616 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ))
3736adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ))
38 elfz5 13419 . . . . . . . . 9 ((𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ) → (𝑖 ∈ (2...(𝐵 − 1)) ↔ 𝑖 ≤ (𝐵 − 1)))
3937, 38syl 17 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∈ (2...(𝐵 − 1)) ↔ 𝑖 ≤ (𝐵 − 1)))
4032, 39mpbird 257 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ (2...(𝐵 − 1)))
41 breq1 5095 . . . . . . . 8 (𝑗 = 𝑖 → (𝑗𝐵𝑖𝐵))
4241adantl 481 . . . . . . 7 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) ∧ 𝑗 = 𝑖) → (𝑗𝐵𝑖𝐵))
43 simprr 772 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖𝐵)
4440, 42, 43rspcedvd 3579 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
45 rexnal 3081 . . . . . . 7 (∃𝑗 ∈ (2...(𝐵 − 1)) ¬ ¬ 𝑗𝐵 ↔ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵)
46 notnotb 315 . . . . . . . . 9 (𝑗𝐵 ↔ ¬ ¬ 𝑗𝐵)
4746bicomi 224 . . . . . . . 8 (¬ ¬ 𝑗𝐵𝑗𝐵)
4847rexbii 3076 . . . . . . 7 (∃𝑗 ∈ (2...(𝐵 − 1)) ¬ ¬ 𝑗𝐵 ↔ ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
4945, 48bitr3i 277 . . . . . 6 (¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵 ↔ ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
5044, 49sylibr 234 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵)
5150olcd 874 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
52 df-nel 3030 . . . . 5 (𝐵 ∉ ℙ ↔ ¬ 𝐵 ∈ ℙ)
53 ianor 983 . . . . . 6 (¬ (𝐵 ∈ (ℤ‘2) ∧ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵) ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
54 isprm3 16594 . . . . . 6 (𝐵 ∈ ℙ ↔ (𝐵 ∈ (ℤ‘2) ∧ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5553, 54xchnxbir 333 . . . . 5 𝐵 ∈ ℙ ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5652, 55bitri 275 . . . 4 (𝐵 ∉ ℙ ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5751, 56sylibr 234 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝐵 ∉ ℙ)
5857rexlimdva2 3132 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) → 𝐵 ∉ ℙ))
593, 58sylbid 240 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) → 𝐵 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2109  wnel 3029  wral 3044  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008  1c1 11010   < clt 11149  cle 11150  cmin 11347  cn 12128  2c2 12183  cz 12471  cuz 12735  ...cfz 13410  cdvds 16163   gcd cgcd 16405  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583
This theorem is referenced by:  prmgaplem7  16969
  Copyright terms: Public domain W3C validator