| Step | Hyp | Ref
| Expression |
| 1 | | ncoprmgcdgt1b 16670 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(∃𝑖 ∈
(ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ 1 < (𝐴 gcd 𝐵))) |
| 2 | 1 | bicomd 223 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (1 <
(𝐴 gcd 𝐵) ↔ ∃𝑖 ∈
(ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵))) |
| 3 | 2 | 3adant3 1132 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) ↔ ∃𝑖 ∈
(ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵))) |
| 4 | | simp1 1136 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ) |
| 5 | | eluzelz 12862 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈
(ℤ≥‘2) → 𝑖 ∈ ℤ) |
| 6 | 4, 5 | anim12ci 614 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
→ (𝑖 ∈ ℤ
∧ 𝐴 ∈
ℕ)) |
| 7 | | dvdsle 16329 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑖 ∥ 𝐴 → 𝑖 ≤ 𝐴)) |
| 8 | 6, 7 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
→ (𝑖 ∥ 𝐴 → 𝑖 ≤ 𝐴)) |
| 9 | | nnre 12247 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
| 10 | | nnre 12247 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
| 11 | | eluzelre 12863 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈
(ℤ≥‘2) → 𝑖 ∈ ℝ) |
| 12 | 9, 10, 11 | 3anim123i 1151 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈
(ℤ≥‘2)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ)) |
| 13 | | 3anrot 1099 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈
ℝ)) |
| 14 | 12, 13 | sylibr 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈
(ℤ≥‘2)) → (𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
| 15 | | lelttr 11325 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑖 ≤ 𝐴 ∧ 𝐴 < 𝐵) → 𝑖 < 𝐵)) |
| 16 | 14, 15 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈
(ℤ≥‘2)) → ((𝑖 ≤ 𝐴 ∧ 𝐴 < 𝐵) → 𝑖 < 𝐵)) |
| 17 | 16 | expcomd 416 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈
(ℤ≥‘2)) → (𝐴 < 𝐵 → (𝑖 ≤ 𝐴 → 𝑖 < 𝐵))) |
| 18 | 17 | 3exp 1119 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝑖 ∈
(ℤ≥‘2) → (𝐴 < 𝐵 → (𝑖 ≤ 𝐴 → 𝑖 < 𝐵))))) |
| 19 | 18 | com34 91 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 < 𝐵 → (𝑖 ∈ (ℤ≥‘2)
→ (𝑖 ≤ 𝐴 → 𝑖 < 𝐵))))) |
| 20 | 19 | 3imp1 1348 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
→ (𝑖 ≤ 𝐴 → 𝑖 < 𝐵)) |
| 21 | 20 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
∧ 𝑖 ≤ 𝐴) → 𝑖 < 𝐵) |
| 22 | | nnz 12609 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
| 23 | 22 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ) |
| 24 | 23, 5 | anim12ci 614 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
→ (𝑖 ∈ ℤ
∧ 𝐵 ∈
ℤ)) |
| 25 | 24 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
∧ 𝑖 ≤ 𝐴) → (𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
| 26 | | zltlem1 12645 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑖 < 𝐵 ↔ 𝑖 ≤ (𝐵 − 1))) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
∧ 𝑖 ≤ 𝐴) → (𝑖 < 𝐵 ↔ 𝑖 ≤ (𝐵 − 1))) |
| 28 | 21, 27 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
∧ 𝑖 ≤ 𝐴) → 𝑖 ≤ (𝐵 − 1)) |
| 29 | 28 | ex 412 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
→ (𝑖 ≤ 𝐴 → 𝑖 ≤ (𝐵 − 1))) |
| 30 | 8, 29 | syldc 48 |
. . . . . . . . . 10
⊢ (𝑖 ∥ 𝐴 → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
→ 𝑖 ≤ (𝐵 − 1))) |
| 31 | 30 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
→ 𝑖 ≤ (𝐵 − 1))) |
| 32 | 31 | impcom 407 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ≤ (𝐵 − 1)) |
| 33 | | peano2zm 12635 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℤ → (𝐵 − 1) ∈
ℤ) |
| 34 | 22, 33 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ → (𝐵 − 1) ∈
ℤ) |
| 35 | 34 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ ℤ) |
| 36 | 35 | anim1ci 616 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
→ (𝑖 ∈
(ℤ≥‘2) ∧ (𝐵 − 1) ∈
ℤ)) |
| 37 | 36 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∈ (ℤ≥‘2)
∧ (𝐵 − 1) ∈
ℤ)) |
| 38 | | elfz5 13533 |
. . . . . . . . 9
⊢ ((𝑖 ∈
(ℤ≥‘2) ∧ (𝐵 − 1) ∈ ℤ) → (𝑖 ∈ (2...(𝐵 − 1)) ↔ 𝑖 ≤ (𝐵 − 1))) |
| 39 | 37, 38 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∈ (2...(𝐵 − 1)) ↔ 𝑖 ≤ (𝐵 − 1))) |
| 40 | 32, 39 | mpbird 257 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∈ (2...(𝐵 − 1))) |
| 41 | | breq1 5122 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → (𝑗 ∥ 𝐵 ↔ 𝑖 ∥ 𝐵)) |
| 42 | 41 | adantl 481 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℕ ∧ 𝐵 ∈
ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) ∧ 𝑗 = 𝑖) → (𝑗 ∥ 𝐵 ↔ 𝑖 ∥ 𝐵)) |
| 43 | | simprr 772 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∥ 𝐵) |
| 44 | 40, 42, 43 | rspcedvd 3603 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → ∃𝑗 ∈ (2...(𝐵 − 1))𝑗 ∥ 𝐵) |
| 45 | | rexnal 3089 |
. . . . . . 7
⊢
(∃𝑗 ∈
(2...(𝐵 − 1)) ¬
¬ 𝑗 ∥ 𝐵 ↔ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗 ∥ 𝐵) |
| 46 | | notnotb 315 |
. . . . . . . . 9
⊢ (𝑗 ∥ 𝐵 ↔ ¬ ¬ 𝑗 ∥ 𝐵) |
| 47 | 46 | bicomi 224 |
. . . . . . . 8
⊢ (¬
¬ 𝑗 ∥ 𝐵 ↔ 𝑗 ∥ 𝐵) |
| 48 | 47 | rexbii 3083 |
. . . . . . 7
⊢
(∃𝑗 ∈
(2...(𝐵 − 1)) ¬
¬ 𝑗 ∥ 𝐵 ↔ ∃𝑗 ∈ (2...(𝐵 − 1))𝑗 ∥ 𝐵) |
| 49 | 45, 48 | bitr3i 277 |
. . . . . 6
⊢ (¬
∀𝑗 ∈
(2...(𝐵 − 1)) ¬
𝑗 ∥ 𝐵 ↔ ∃𝑗 ∈ (2...(𝐵 − 1))𝑗 ∥ 𝐵) |
| 50 | 44, 49 | sylibr 234 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗 ∥ 𝐵) |
| 51 | 50 | olcd 874 |
. . . 4
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (¬ 𝐵 ∈ (ℤ≥‘2)
∨ ¬ ∀𝑗 ∈
(2...(𝐵 − 1)) ¬
𝑗 ∥ 𝐵)) |
| 52 | | df-nel 3037 |
. . . . 5
⊢ (𝐵 ∉ ℙ ↔ ¬
𝐵 ∈
ℙ) |
| 53 | | ianor 983 |
. . . . . 6
⊢ (¬
(𝐵 ∈
(ℤ≥‘2) ∧ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗 ∥ 𝐵) ↔ (¬ 𝐵 ∈ (ℤ≥‘2)
∨ ¬ ∀𝑗 ∈
(2...(𝐵 − 1)) ¬
𝑗 ∥ 𝐵)) |
| 54 | | isprm3 16702 |
. . . . . 6
⊢ (𝐵 ∈ ℙ ↔ (𝐵 ∈
(ℤ≥‘2) ∧ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗 ∥ 𝐵)) |
| 55 | 53, 54 | xchnxbir 333 |
. . . . 5
⊢ (¬
𝐵 ∈ ℙ ↔
(¬ 𝐵 ∈
(ℤ≥‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗 ∥ 𝐵)) |
| 56 | 52, 55 | bitri 275 |
. . . 4
⊢ (𝐵 ∉ ℙ ↔ (¬
𝐵 ∈
(ℤ≥‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗 ∥ 𝐵)) |
| 57 | 51, 56 | sylibr 234 |
. . 3
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ≥‘2))
∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐵 ∉ ℙ) |
| 58 | 57 | rexlimdva2 3143 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (∃𝑖 ∈
(ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝐵 ∉ ℙ)) |
| 59 | 3, 58 | sylbid 240 |
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) → 𝐵 ∉ ℙ)) |