MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0enwwlksnge1 Structured version   Visualization version   GIF version

Theorem 0enwwlksnge1 29849
Description: In graphs without edges, there are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.)
Assertion
Ref Expression
0enwwlksnge1 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅)

Proof of Theorem 0enwwlksnge1
Dummy variables 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 12394 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 wwlksn 29822 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
31, 2syl 17 . . 3 (𝑁 ∈ ℕ → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
43adantl 481 . 2 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
5 eqid 2731 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
6 eqid 2731 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
75, 6iswwlks 29821 . . . . . . 7 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8 nncn 12139 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
9 pncan1 11547 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
108, 9syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
11 id 22 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
1210, 11eqeltrd 2831 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) ∈ ℕ)
1312adantl 481 . . . . . . . . . . . . . 14 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) − 1) ∈ ℕ)
1413adantl 481 . . . . . . . . . . . . 13 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((𝑁 + 1) − 1) ∈ ℕ)
15 oveq1 7359 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = (𝑁 + 1) → ((♯‘𝑤) − 1) = ((𝑁 + 1) − 1))
1615eleq1d 2816 . . . . . . . . . . . . . 14 ((♯‘𝑤) = (𝑁 + 1) → (((♯‘𝑤) − 1) ∈ ℕ ↔ ((𝑁 + 1) − 1) ∈ ℕ))
1716adantr 480 . . . . . . . . . . . . 13 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (((♯‘𝑤) − 1) ∈ ℕ ↔ ((𝑁 + 1) − 1) ∈ ℕ))
1814, 17mpbird 257 . . . . . . . . . . . 12 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((♯‘𝑤) − 1) ∈ ℕ)
19 lbfzo0 13605 . . . . . . . . . . . 12 (0 ∈ (0..^((♯‘𝑤) − 1)) ↔ ((♯‘𝑤) − 1) ∈ ℕ)
2018, 19sylibr 234 . . . . . . . . . . 11 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → 0 ∈ (0..^((♯‘𝑤) − 1)))
21 fveq2 6828 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝑤𝑖) = (𝑤‘0))
22 fv0p1e1 12249 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝑤‘(𝑖 + 1)) = (𝑤‘1))
2321, 22preq12d 4693 . . . . . . . . . . . . 13 (𝑖 = 0 → {(𝑤𝑖), (𝑤‘(𝑖 + 1))} = {(𝑤‘0), (𝑤‘1)})
2423eleq1d 2816 . . . . . . . . . . . 12 (𝑖 = 0 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
2524adantl 481 . . . . . . . . . . 11 ((((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) ∧ 𝑖 = 0) → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
2620, 25rspcdv 3564 . . . . . . . . . 10 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
27 eleq2 2820 . . . . . . . . . . . . 13 ((Edg‘𝐺) = ∅ → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ ∅))
28 noel 4287 . . . . . . . . . . . . . 14 ¬ {(𝑤‘0), (𝑤‘1)} ∈ ∅
2928pm2.21i 119 . . . . . . . . . . . . 13 ({(𝑤‘0), (𝑤‘1)} ∈ ∅ → ¬ (♯‘𝑤) = (𝑁 + 1))
3027, 29biimtrdi 253 . . . . . . . . . . . 12 ((Edg‘𝐺) = ∅ → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3130adantr 480 . . . . . . . . . . 11 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3231adantl 481 . . . . . . . . . 10 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3326, 32syldc 48 . . . . . . . . 9 (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
34333ad2ant3 1135 . . . . . . . 8 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3534com12 32 . . . . . . 7 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
367, 35biimtrid 242 . . . . . 6 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (𝑤 ∈ (WWalks‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3736expimpd 453 . . . . 5 ((♯‘𝑤) = (𝑁 + 1) → ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalks‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
38 ax-1 6 . . . . 5 (¬ (♯‘𝑤) = (𝑁 + 1) → ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalks‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3937, 38pm2.61i 182 . . . 4 ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalks‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1))
4039ralrimiva 3124 . . 3 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ∀𝑤 ∈ (WWalks‘𝐺) ¬ (♯‘𝑤) = (𝑁 + 1))
41 rabeq0 4337 . . 3 ({𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅ ↔ ∀𝑤 ∈ (WWalks‘𝐺) ¬ (♯‘𝑤) = (𝑁 + 1))
4240, 41sylibr 234 . 2 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅)
434, 42eqtrd 2766 1 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  c0 4282  {cpr 4577  cfv 6487  (class class class)co 7352  cc 11010  0cc0 11012  1c1 11013   + caddc 11015  cmin 11350  cn 12131  0cn0 12387  ..^cfzo 13560  chash 14243  Word cword 14426  Vtxcvtx 28981  Edgcedg 29032  WWalkscwwlks 29810   WWalksN cwwlksn 29811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-n0 12388  df-z 12475  df-uz 12739  df-fz 13414  df-fzo 13561  df-hash 14244  df-word 14427  df-wwlks 29815  df-wwlksn 29816
This theorem is referenced by:  rusgr0edg  29961
  Copyright terms: Public domain W3C validator