MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0enwwlksnge1 Structured version   Visualization version   GIF version

Theorem 0enwwlksnge1 29796
Description: In graphs without edges, there are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.)
Assertion
Ref Expression
0enwwlksnge1 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅)

Proof of Theorem 0enwwlksnge1
Dummy variables 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 12379 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 wwlksn 29769 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
31, 2syl 17 . . 3 (𝑁 ∈ ℕ → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
43adantl 481 . 2 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
5 eqid 2729 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
6 eqid 2729 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
75, 6iswwlks 29768 . . . . . . 7 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8 nncn 12124 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
9 pncan1 11532 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
108, 9syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
11 id 22 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
1210, 11eqeltrd 2828 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) ∈ ℕ)
1312adantl 481 . . . . . . . . . . . . . 14 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) − 1) ∈ ℕ)
1413adantl 481 . . . . . . . . . . . . 13 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((𝑁 + 1) − 1) ∈ ℕ)
15 oveq1 7347 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = (𝑁 + 1) → ((♯‘𝑤) − 1) = ((𝑁 + 1) − 1))
1615eleq1d 2813 . . . . . . . . . . . . . 14 ((♯‘𝑤) = (𝑁 + 1) → (((♯‘𝑤) − 1) ∈ ℕ ↔ ((𝑁 + 1) − 1) ∈ ℕ))
1716adantr 480 . . . . . . . . . . . . 13 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (((♯‘𝑤) − 1) ∈ ℕ ↔ ((𝑁 + 1) − 1) ∈ ℕ))
1814, 17mpbird 257 . . . . . . . . . . . 12 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((♯‘𝑤) − 1) ∈ ℕ)
19 lbfzo0 13590 . . . . . . . . . . . 12 (0 ∈ (0..^((♯‘𝑤) − 1)) ↔ ((♯‘𝑤) − 1) ∈ ℕ)
2018, 19sylibr 234 . . . . . . . . . . 11 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → 0 ∈ (0..^((♯‘𝑤) − 1)))
21 fveq2 6816 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝑤𝑖) = (𝑤‘0))
22 fv0p1e1 12234 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝑤‘(𝑖 + 1)) = (𝑤‘1))
2321, 22preq12d 4691 . . . . . . . . . . . . 13 (𝑖 = 0 → {(𝑤𝑖), (𝑤‘(𝑖 + 1))} = {(𝑤‘0), (𝑤‘1)})
2423eleq1d 2813 . . . . . . . . . . . 12 (𝑖 = 0 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
2524adantl 481 . . . . . . . . . . 11 ((((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) ∧ 𝑖 = 0) → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
2620, 25rspcdv 3566 . . . . . . . . . 10 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
27 eleq2 2817 . . . . . . . . . . . . 13 ((Edg‘𝐺) = ∅ → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ ∅))
28 noel 4285 . . . . . . . . . . . . . 14 ¬ {(𝑤‘0), (𝑤‘1)} ∈ ∅
2928pm2.21i 119 . . . . . . . . . . . . 13 ({(𝑤‘0), (𝑤‘1)} ∈ ∅ → ¬ (♯‘𝑤) = (𝑁 + 1))
3027, 29biimtrdi 253 . . . . . . . . . . . 12 ((Edg‘𝐺) = ∅ → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3130adantr 480 . . . . . . . . . . 11 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3231adantl 481 . . . . . . . . . 10 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3326, 32syldc 48 . . . . . . . . 9 (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
34333ad2ant3 1135 . . . . . . . 8 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3534com12 32 . . . . . . 7 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
367, 35biimtrid 242 . . . . . 6 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (𝑤 ∈ (WWalks‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3736expimpd 453 . . . . 5 ((♯‘𝑤) = (𝑁 + 1) → ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalks‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
38 ax-1 6 . . . . 5 (¬ (♯‘𝑤) = (𝑁 + 1) → ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalks‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3937, 38pm2.61i 182 . . . 4 ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalks‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1))
4039ralrimiva 3121 . . 3 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ∀𝑤 ∈ (WWalks‘𝐺) ¬ (♯‘𝑤) = (𝑁 + 1))
41 rabeq0 4335 . . 3 ({𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅ ↔ ∀𝑤 ∈ (WWalks‘𝐺) ¬ (♯‘𝑤) = (𝑁 + 1))
4240, 41sylibr 234 . 2 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅)
434, 42eqtrd 2764 1 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3392  c0 4280  {cpr 4575  cfv 6476  (class class class)co 7340  cc 10995  0cc0 10997  1c1 10998   + caddc 11000  cmin 11335  cn 12116  0cn0 12372  ..^cfzo 13545  chash 14225  Word cword 14408  Vtxcvtx 28928  Edgcedg 28979  WWalkscwwlks 29757   WWalksN cwwlksn 29758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5214  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662  ax-cnex 11053  ax-resscn 11054  ax-1cn 11055  ax-icn 11056  ax-addcl 11057  ax-addrcl 11058  ax-mulcl 11059  ax-mulrcl 11060  ax-mulcom 11061  ax-addass 11062  ax-mulass 11063  ax-distr 11064  ax-i2m1 11065  ax-1ne0 11066  ax-1rid 11067  ax-rnegex 11068  ax-rrecex 11069  ax-cnre 11070  ax-pre-lttri 11071  ax-pre-lttrn 11072  ax-pre-ltadd 11073  ax-pre-mulgt0 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4895  df-iun 4940  df-br 5089  df-opab 5151  df-mpt 5170  df-tr 5196  df-id 5508  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5566  df-we 5568  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7297  df-ov 7343  df-oprab 7344  df-mpo 7345  df-om 7791  df-1st 7915  df-2nd 7916  df-frecs 8205  df-wrecs 8236  df-recs 8285  df-rdg 8323  df-1o 8379  df-er 8616  df-map 8746  df-en 8864  df-dom 8865  df-sdom 8866  df-fin 8867  df-card 9823  df-pnf 11139  df-mnf 11140  df-xr 11141  df-ltxr 11142  df-le 11143  df-sub 11337  df-neg 11338  df-nn 12117  df-n0 12373  df-z 12460  df-uz 12724  df-fz 13399  df-fzo 13546  df-hash 14226  df-word 14409  df-wwlks 29762  df-wwlksn 29763
This theorem is referenced by:  rusgr0edg  29905
  Copyright terms: Public domain W3C validator