MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0enwwlksnge1 Structured version   Visualization version   GIF version

Theorem 0enwwlksnge1 27802
Description: In graphs without edges, there are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.)
Assertion
Ref Expression
0enwwlksnge1 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅)

Proof of Theorem 0enwwlksnge1
Dummy variables 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 11983 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 wwlksn 27775 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
31, 2syl 17 . . 3 (𝑁 ∈ ℕ → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
43adantl 485 . 2 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
5 eqid 2738 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
6 eqid 2738 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
75, 6iswwlks 27774 . . . . . . 7 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8 nncn 11724 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
9 pncan1 11142 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
108, 9syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
11 id 22 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
1210, 11eqeltrd 2833 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) ∈ ℕ)
1312adantl 485 . . . . . . . . . . . . . 14 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) − 1) ∈ ℕ)
1413adantl 485 . . . . . . . . . . . . 13 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((𝑁 + 1) − 1) ∈ ℕ)
15 oveq1 7177 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = (𝑁 + 1) → ((♯‘𝑤) − 1) = ((𝑁 + 1) − 1))
1615eleq1d 2817 . . . . . . . . . . . . . 14 ((♯‘𝑤) = (𝑁 + 1) → (((♯‘𝑤) − 1) ∈ ℕ ↔ ((𝑁 + 1) − 1) ∈ ℕ))
1716adantr 484 . . . . . . . . . . . . 13 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (((♯‘𝑤) − 1) ∈ ℕ ↔ ((𝑁 + 1) − 1) ∈ ℕ))
1814, 17mpbird 260 . . . . . . . . . . . 12 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((♯‘𝑤) − 1) ∈ ℕ)
19 lbfzo0 13168 . . . . . . . . . . . 12 (0 ∈ (0..^((♯‘𝑤) − 1)) ↔ ((♯‘𝑤) − 1) ∈ ℕ)
2018, 19sylibr 237 . . . . . . . . . . 11 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → 0 ∈ (0..^((♯‘𝑤) − 1)))
21 fveq2 6674 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝑤𝑖) = (𝑤‘0))
22 fv0p1e1 11839 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝑤‘(𝑖 + 1)) = (𝑤‘1))
2321, 22preq12d 4632 . . . . . . . . . . . . 13 (𝑖 = 0 → {(𝑤𝑖), (𝑤‘(𝑖 + 1))} = {(𝑤‘0), (𝑤‘1)})
2423eleq1d 2817 . . . . . . . . . . . 12 (𝑖 = 0 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
2524adantl 485 . . . . . . . . . . 11 ((((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) ∧ 𝑖 = 0) → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
2620, 25rspcdv 3518 . . . . . . . . . 10 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
27 eleq2 2821 . . . . . . . . . . . . 13 ((Edg‘𝐺) = ∅ → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ ∅))
28 noel 4219 . . . . . . . . . . . . . 14 ¬ {(𝑤‘0), (𝑤‘1)} ∈ ∅
2928pm2.21i 119 . . . . . . . . . . . . 13 ({(𝑤‘0), (𝑤‘1)} ∈ ∅ → ¬ (♯‘𝑤) = (𝑁 + 1))
3027, 29syl6bi 256 . . . . . . . . . . . 12 ((Edg‘𝐺) = ∅ → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3130adantr 484 . . . . . . . . . . 11 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3231adantl 485 . . . . . . . . . 10 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3326, 32syldc 48 . . . . . . . . 9 (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
34333ad2ant3 1136 . . . . . . . 8 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3534com12 32 . . . . . . 7 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
367, 35syl5bi 245 . . . . . 6 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (𝑤 ∈ (WWalks‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3736expimpd 457 . . . . 5 ((♯‘𝑤) = (𝑁 + 1) → ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalks‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
38 ax-1 6 . . . . 5 (¬ (♯‘𝑤) = (𝑁 + 1) → ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalks‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3937, 38pm2.61i 185 . . . 4 ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalks‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1))
4039ralrimiva 3096 . . 3 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ∀𝑤 ∈ (WWalks‘𝐺) ¬ (♯‘𝑤) = (𝑁 + 1))
41 rabeq0 4273 . . 3 ({𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅ ↔ ∀𝑤 ∈ (WWalks‘𝐺) ¬ (♯‘𝑤) = (𝑁 + 1))
4240, 41sylibr 237 . 2 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅)
434, 42eqtrd 2773 1 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wral 3053  {crab 3057  c0 4211  {cpr 4518  cfv 6339  (class class class)co 7170  cc 10613  0cc0 10615  1c1 10616   + caddc 10618  cmin 10948  cn 11716  0cn0 11976  ..^cfzo 13124  chash 13782  Word cword 13955  Vtxcvtx 26941  Edgcedg 26992  WWalkscwwlks 27763   WWalksN cwwlksn 27764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-fzo 13125  df-hash 13783  df-word 13956  df-wwlks 27768  df-wwlksn 27769
This theorem is referenced by:  rusgr0edg  27911
  Copyright terms: Public domain W3C validator