MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0enwwlksnge1 Structured version   Visualization version   GIF version

Theorem 0enwwlksnge1 27650
Description: In graphs without edges, there are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.)
Assertion
Ref Expression
0enwwlksnge1 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅)

Proof of Theorem 0enwwlksnge1
Dummy variables 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 11892 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 wwlksn 27623 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
31, 2syl 17 . . 3 (𝑁 ∈ ℕ → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
43adantl 485 . 2 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
5 eqid 2798 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
6 eqid 2798 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
75, 6iswwlks 27622 . . . . . . 7 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8 nncn 11633 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
9 pncan1 11053 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
108, 9syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
11 id 22 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
1210, 11eqeltrd 2890 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) ∈ ℕ)
1312adantl 485 . . . . . . . . . . . . . 14 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) − 1) ∈ ℕ)
1413adantl 485 . . . . . . . . . . . . 13 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((𝑁 + 1) − 1) ∈ ℕ)
15 oveq1 7142 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = (𝑁 + 1) → ((♯‘𝑤) − 1) = ((𝑁 + 1) − 1))
1615eleq1d 2874 . . . . . . . . . . . . . 14 ((♯‘𝑤) = (𝑁 + 1) → (((♯‘𝑤) − 1) ∈ ℕ ↔ ((𝑁 + 1) − 1) ∈ ℕ))
1716adantr 484 . . . . . . . . . . . . 13 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (((♯‘𝑤) − 1) ∈ ℕ ↔ ((𝑁 + 1) − 1) ∈ ℕ))
1814, 17mpbird 260 . . . . . . . . . . . 12 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((♯‘𝑤) − 1) ∈ ℕ)
19 lbfzo0 13072 . . . . . . . . . . . 12 (0 ∈ (0..^((♯‘𝑤) − 1)) ↔ ((♯‘𝑤) − 1) ∈ ℕ)
2018, 19sylibr 237 . . . . . . . . . . 11 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → 0 ∈ (0..^((♯‘𝑤) − 1)))
21 fveq2 6645 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝑤𝑖) = (𝑤‘0))
22 fv0p1e1 11748 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝑤‘(𝑖 + 1)) = (𝑤‘1))
2321, 22preq12d 4637 . . . . . . . . . . . . 13 (𝑖 = 0 → {(𝑤𝑖), (𝑤‘(𝑖 + 1))} = {(𝑤‘0), (𝑤‘1)})
2423eleq1d 2874 . . . . . . . . . . . 12 (𝑖 = 0 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
2524adantl 485 . . . . . . . . . . 11 ((((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) ∧ 𝑖 = 0) → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
2620, 25rspcdv 3563 . . . . . . . . . 10 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
27 eleq2 2878 . . . . . . . . . . . . 13 ((Edg‘𝐺) = ∅ → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ ∅))
28 noel 4247 . . . . . . . . . . . . . 14 ¬ {(𝑤‘0), (𝑤‘1)} ∈ ∅
2928pm2.21i 119 . . . . . . . . . . . . 13 ({(𝑤‘0), (𝑤‘1)} ∈ ∅ → ¬ (♯‘𝑤) = (𝑁 + 1))
3027, 29syl6bi 256 . . . . . . . . . . . 12 ((Edg‘𝐺) = ∅ → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3130adantr 484 . . . . . . . . . . 11 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3231adantl 485 . . . . . . . . . 10 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3326, 32syldc 48 . . . . . . . . 9 (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
34333ad2ant3 1132 . . . . . . . 8 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3534com12 32 . . . . . . 7 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
367, 35syl5bi 245 . . . . . 6 (((♯‘𝑤) = (𝑁 + 1) ∧ ((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ)) → (𝑤 ∈ (WWalks‘𝐺) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3736expimpd 457 . . . . 5 ((♯‘𝑤) = (𝑁 + 1) → ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalks‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
38 ax-1 6 . . . . 5 (¬ (♯‘𝑤) = (𝑁 + 1) → ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalks‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1)))
3937, 38pm2.61i 185 . . . 4 ((((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (WWalks‘𝐺)) → ¬ (♯‘𝑤) = (𝑁 + 1))
4039ralrimiva 3149 . . 3 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → ∀𝑤 ∈ (WWalks‘𝐺) ¬ (♯‘𝑤) = (𝑁 + 1))
41 rabeq0 4292 . . 3 ({𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅ ↔ ∀𝑤 ∈ (WWalks‘𝐺) ¬ (♯‘𝑤) = (𝑁 + 1))
4240, 41sylibr 237 . 2 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅)
434, 42eqtrd 2833 1 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  {crab 3110  c0 4243  {cpr 4527  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529  cmin 10859  cn 11625  0cn0 11885  ..^cfzo 13028  chash 13686  Word cword 13857  Vtxcvtx 26789  Edgcedg 26840  WWalkscwwlks 27611   WWalksN cwwlksn 27612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-wwlks 27616  df-wwlksn 27617
This theorem is referenced by:  rusgr0edg  27759
  Copyright terms: Public domain W3C validator