MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatsubcl Structured version   Visualization version   GIF version

Theorem scmatsubcl 22420
Description: The difference of two scalar matrices is a scalar matrix. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatsubcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)

Proof of Theorem scmatsubcl
Dummy variables 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatid.e . . . . 5 𝐸 = (Base‘𝑅)
2 scmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 scmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 eqid 2729 . . . . 5 (1r𝐴) = (1r𝐴)
5 eqid 2729 . . . . 5 ( ·𝑠𝐴) = ( ·𝑠𝐴)
6 scmatid.s . . . . 5 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatscmid 22409 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝑆) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
873expa 1118 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝑆) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
98adantrr 717 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
101, 2, 3, 4, 5, 6scmatscmid 22409 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝑆) → ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))
11103expia 1121 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝑆 → ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))))
12 oveq12 7362 . . . . . . . . . . 11 ((𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → (𝑋(-g𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(-g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
1312adantl 481 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → (𝑋(-g𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(-g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
14 eqid 2729 . . . . . . . . . . . . . 14 (Scalar‘𝐴) = (Scalar‘𝐴)
15 eqid 2729 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
16 eqid 2729 . . . . . . . . . . . . . 14 (-g𝐴) = (-g𝐴)
17 eqid 2729 . . . . . . . . . . . . . 14 (-g‘(Scalar‘𝐴)) = (-g‘(Scalar‘𝐴))
182matlmod 22332 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
1918ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝐴 ∈ LMod)
202matsca2 22323 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴))
2120fveq2d 6830 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘(Scalar‘𝐴)))
221, 21eqtrid 2776 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐸 = (Base‘(Scalar‘𝐴)))
2322eleq2d 2814 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2423biimpd 229 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2524adantr 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2625imp 406 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑐 ∈ (Base‘(Scalar‘𝐴)))
2722eleq2d 2814 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑑𝐸𝑑 ∈ (Base‘(Scalar‘𝐴))))
2827biimpa 476 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → 𝑑 ∈ (Base‘(Scalar‘𝐴)))
2928adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑑 ∈ (Base‘(Scalar‘𝐴)))
302matring 22346 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
313, 4ringidcl 20168 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
3230, 31syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐵)
3332ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (1r𝐴) ∈ 𝐵)
343, 5, 14, 15, 16, 17, 19, 26, 29, 33lmodsubdir 20841 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐( ·𝑠𝐴)(1r𝐴))(-g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
3534eqcomd 2735 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(-g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) = ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
36 simpll 766 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3720eqcomd 2735 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝐴) = 𝑅)
3837ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (Scalar‘𝐴) = 𝑅)
3938fveq2d 6830 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (-g‘(Scalar‘𝐴)) = (-g𝑅))
4039oveqd 7370 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(-g‘(Scalar‘𝐴))𝑑) = (𝑐(-g𝑅)𝑑))
41 ringgrp 20141 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4241adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Grp)
4342ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑅 ∈ Grp)
44 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑐𝐸)
45 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑑𝐸)
46 eqid 2729 . . . . . . . . . . . . . . . . 17 (-g𝑅) = (-g𝑅)
471, 46grpsubcl 18917 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Grp ∧ 𝑐𝐸𝑑𝐸) → (𝑐(-g𝑅)𝑑) ∈ 𝐸)
4843, 44, 45, 47syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(-g𝑅)𝑑) ∈ 𝐸)
4940, 48eqeltrd 2828 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(-g‘(Scalar‘𝐴))𝑑) ∈ 𝐸)
501, 2, 3, 5matvscl 22334 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑐(-g‘(Scalar‘𝐴))𝑑) ∈ 𝐸 ∧ (1r𝐴) ∈ 𝐵)) → ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
5136, 49, 33, 50syl12anc 836 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
52 oveq1 7360 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑐(-g‘(Scalar‘𝐴))𝑑) → (𝑒( ·𝑠𝐴)(1r𝐴)) = ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
5352eqeq2d 2740 . . . . . . . . . . . . . . 15 (𝑒 = (𝑐(-g‘(Scalar‘𝐴))𝑑) → (((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴))))
5453adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ 𝑒 = (𝑐(-g‘(Scalar‘𝐴))𝑑)) → (((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴))))
55 eqidd 2730 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
5649, 54, 55rspcedvd 3581 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ∃𝑒𝐸 ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))
571, 2, 3, 4, 5, 6scmatel 22408 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
5857ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
5951, 56, 58mpbir2and 713 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)
6035, 59eqeltrd 2828 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(-g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
6160adantr 480 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → ((𝑐( ·𝑠𝐴)(1r𝐴))(-g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
6213, 61eqeltrd 2828 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)
6362exp32 420 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)))
6463rexlimdva 3130 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)))
6564com23 86 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)))
6665rexlimdva 3130 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)))
6711, 66syldc 48 . . . 4 (𝑌𝑆 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)))
6867adantl 481 . . 3 ((𝑋𝑆𝑌𝑆) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)))
6968impcom 407 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆))
709, 69mpd 15 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  cfv 6486  (class class class)co 7353  Fincfn 8879  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361  Grpcgrp 18830  -gcsg 18832  1rcur 20084  Ringcrg 20136  LModclmod 20781   Mat cmat 22310   ScMat cscmat 22392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-subrg 20473  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-mamu 22294  df-mat 22311  df-scmat 22394
This theorem is referenced by:  scmatsgrp  22422  scmatsgrp1  22425
  Copyright terms: Public domain W3C validator