MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatsubcl Structured version   Visualization version   GIF version

Theorem scmatsubcl 22425
Description: The difference of two scalar matrices is a scalar matrix. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatsubcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)

Proof of Theorem scmatsubcl
Dummy variables 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatid.e . . . . 5 𝐸 = (Base‘𝑅)
2 scmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 scmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 eqid 2730 . . . . 5 (1r𝐴) = (1r𝐴)
5 eqid 2730 . . . . 5 ( ·𝑠𝐴) = ( ·𝑠𝐴)
6 scmatid.s . . . . 5 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatscmid 22414 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝑆) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
873expa 1118 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝑆) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
98adantrr 717 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))
101, 2, 3, 4, 5, 6scmatscmid 22414 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝑆) → ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))
11103expia 1121 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝑆 → ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))))
12 oveq12 7350 . . . . . . . . . . 11 ((𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → (𝑋(-g𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(-g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
1312adantl 481 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → (𝑋(-g𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(-g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
14 eqid 2730 . . . . . . . . . . . . . 14 (Scalar‘𝐴) = (Scalar‘𝐴)
15 eqid 2730 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
16 eqid 2730 . . . . . . . . . . . . . 14 (-g𝐴) = (-g𝐴)
17 eqid 2730 . . . . . . . . . . . . . 14 (-g‘(Scalar‘𝐴)) = (-g‘(Scalar‘𝐴))
182matlmod 22337 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
1918ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝐴 ∈ LMod)
202matsca2 22328 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴))
2120fveq2d 6821 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘(Scalar‘𝐴)))
221, 21eqtrid 2777 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐸 = (Base‘(Scalar‘𝐴)))
2322eleq2d 2815 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2423biimpd 229 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2524adantr 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (𝑐𝐸𝑐 ∈ (Base‘(Scalar‘𝐴))))
2625imp 406 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑐 ∈ (Base‘(Scalar‘𝐴)))
2722eleq2d 2815 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑑𝐸𝑑 ∈ (Base‘(Scalar‘𝐴))))
2827biimpa 476 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → 𝑑 ∈ (Base‘(Scalar‘𝐴)))
2928adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑑 ∈ (Base‘(Scalar‘𝐴)))
302matring 22351 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
313, 4ringidcl 20176 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
3230, 31syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐵)
3332ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (1r𝐴) ∈ 𝐵)
343, 5, 14, 15, 16, 17, 19, 26, 29, 33lmodsubdir 20846 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐( ·𝑠𝐴)(1r𝐴))(-g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
3534eqcomd 2736 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(-g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) = ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
36 simpll 766 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3720eqcomd 2736 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝐴) = 𝑅)
3837ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (Scalar‘𝐴) = 𝑅)
3938fveq2d 6821 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (-g‘(Scalar‘𝐴)) = (-g𝑅))
4039oveqd 7358 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(-g‘(Scalar‘𝐴))𝑑) = (𝑐(-g𝑅)𝑑))
41 ringgrp 20149 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4241adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Grp)
4342ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑅 ∈ Grp)
44 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑐𝐸)
45 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → 𝑑𝐸)
46 eqid 2730 . . . . . . . . . . . . . . . . 17 (-g𝑅) = (-g𝑅)
471, 46grpsubcl 18925 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Grp ∧ 𝑐𝐸𝑑𝐸) → (𝑐(-g𝑅)𝑑) ∈ 𝐸)
4843, 44, 45, 47syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(-g𝑅)𝑑) ∈ 𝐸)
4940, 48eqeltrd 2829 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑐(-g‘(Scalar‘𝐴))𝑑) ∈ 𝐸)
501, 2, 3, 5matvscl 22339 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑐(-g‘(Scalar‘𝐴))𝑑) ∈ 𝐸 ∧ (1r𝐴) ∈ 𝐵)) → ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
5136, 49, 33, 50syl12anc 836 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
52 oveq1 7348 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑐(-g‘(Scalar‘𝐴))𝑑) → (𝑒( ·𝑠𝐴)(1r𝐴)) = ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
5352eqeq2d 2741 . . . . . . . . . . . . . . 15 (𝑒 = (𝑐(-g‘(Scalar‘𝐴))𝑑) → (((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴))))
5453adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ 𝑒 = (𝑐(-g‘(Scalar‘𝐴))𝑑)) → (((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴))))
55 eqidd 2731 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)))
5649, 54, 55rspcedvd 3577 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ∃𝑒𝐸 ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))
571, 2, 3, 4, 5, 6scmatel 22413 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
5857ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
5951, 56, 58mpbir2and 713 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐(-g‘(Scalar‘𝐴))𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)
6035, 59eqeltrd 2829 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(-g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
6160adantr 480 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → ((𝑐( ·𝑠𝐴)(1r𝐴))(-g𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
6213, 61eqeltrd 2829 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) ∧ (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)
6362exp32 420 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) ∧ 𝑐𝐸) → (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)))
6463rexlimdva 3131 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)))
6564com23 86 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑑𝐸) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)))
6665rexlimdva 3131 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)))
6711, 66syldc 48 . . . 4 (𝑌𝑆 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)))
6867adantl 481 . . 3 ((𝑋𝑆𝑌𝑆) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)))
6968impcom 407 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆))
709, 69mpd 15 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(-g𝐴)𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wrex 3054  cfv 6477  (class class class)co 7341  Fincfn 8864  Basecbs 17112  Scalarcsca 17156   ·𝑠 cvsca 17157  0gc0g 17335  Grpcgrp 18838  -gcsg 18840  1rcur 20092  Ringcrg 20144  LModclmod 20786   Mat cmat 22315   ScMat cscmat 22397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-ghm 19118  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-subrg 20478  df-lmod 20788  df-lss 20858  df-sra 21100  df-rgmod 21101  df-dsmm 21662  df-frlm 21677  df-mamu 22299  df-mat 22316  df-scmat 22399
This theorem is referenced by:  scmatsgrp  22427  scmatsgrp1  22430
  Copyright terms: Public domain W3C validator