| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcid2 | Structured version Visualization version GIF version | ||
| Description: The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcbas.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| termcbasmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termcbasmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| termcid.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| termcid.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| termcid.i | ⊢ 1 = (Id‘𝐶) |
| Ref | Expression |
|---|---|
| termcid2 | ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | termcbas.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | termcbasmo.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | termcbasmo.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | termcid.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | termcid.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 7 | termcid.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | termcid 49156 | . 2 ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) |
| 9 | 1, 2, 3, 4 | termcbasmo 49153 | . . 3 ⊢ (𝜑 → 𝑋 = 𝑌) |
| 10 | 9 | fveq2d 6876 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = ( 1 ‘𝑌)) |
| 11 | 8, 10 | eqtrd 2769 | 1 ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 Hom chom 17267 Idccid 17662 TermCatctermc 49143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-cat 17665 df-cid 17666 df-thinc 49091 df-termc 49144 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |