Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcid2 Structured version   Visualization version   GIF version

Theorem termcid2 49449
Description: The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
termcbasmo.y (𝜑𝑌𝐵)
termcid.h 𝐻 = (Hom ‘𝐶)
termcid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
termcid.i 1 = (Id‘𝐶)
Assertion
Ref Expression
termcid2 (𝜑𝐹 = ( 1𝑌))

Proof of Theorem termcid2
StepHypRef Expression
1 termcbas.c . . 3 (𝜑𝐶 ∈ TermCat)
2 termcbas.b . . 3 𝐵 = (Base‘𝐶)
3 termcbasmo.x . . 3 (𝜑𝑋𝐵)
4 termcbasmo.y . . 3 (𝜑𝑌𝐵)
5 termcid.h . . 3 𝐻 = (Hom ‘𝐶)
6 termcid.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
7 termcid.i . . 3 1 = (Id‘𝐶)
81, 2, 3, 4, 5, 6, 7termcid 49448 . 2 (𝜑𝐹 = ( 1𝑋))
91, 2, 3, 4termcbasmo 49445 . . 3 (𝜑𝑋 = 𝑌)
109fveq2d 6844 . 2 (𝜑 → ( 1𝑋) = ( 1𝑌))
118, 10eqtrd 2764 1 (𝜑𝐹 = ( 1𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  Hom chom 17207  Idccid 17602  TermCatctermc 49434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-cat 17605  df-cid 17606  df-thinc 49380  df-termc 49435
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator