Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcid2 Structured version   Visualization version   GIF version

Theorem termcid2 49157
Description: The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
termcbasmo.y (𝜑𝑌𝐵)
termcid.h 𝐻 = (Hom ‘𝐶)
termcid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
termcid.i 1 = (Id‘𝐶)
Assertion
Ref Expression
termcid2 (𝜑𝐹 = ( 1𝑌))

Proof of Theorem termcid2
StepHypRef Expression
1 termcbas.c . . 3 (𝜑𝐶 ∈ TermCat)
2 termcbas.b . . 3 𝐵 = (Base‘𝐶)
3 termcbasmo.x . . 3 (𝜑𝑋𝐵)
4 termcbasmo.y . . 3 (𝜑𝑌𝐵)
5 termcid.h . . 3 𝐻 = (Hom ‘𝐶)
6 termcid.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
7 termcid.i . . 3 1 = (Id‘𝐶)
81, 2, 3, 4, 5, 6, 7termcid 49156 . 2 (𝜑𝐹 = ( 1𝑋))
91, 2, 3, 4termcbasmo 49153 . . 3 (𝜑𝑋 = 𝑌)
109fveq2d 6876 . 2 (𝜑 → ( 1𝑋) = ( 1𝑌))
118, 10eqtrd 2769 1 (𝜑𝐹 = ( 1𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6527  (class class class)co 7399  Basecbs 17213  Hom chom 17267  Idccid 17662  TermCatctermc 49143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-cat 17665  df-cid 17666  df-thinc 49091  df-termc 49144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator