Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcid2 Structured version   Visualization version   GIF version

Theorem termcid2 49492
Description: The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
termcbasmo.y (𝜑𝑌𝐵)
termcid.h 𝐻 = (Hom ‘𝐶)
termcid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
termcid.i 1 = (Id‘𝐶)
Assertion
Ref Expression
termcid2 (𝜑𝐹 = ( 1𝑌))

Proof of Theorem termcid2
StepHypRef Expression
1 termcbas.c . . 3 (𝜑𝐶 ∈ TermCat)
2 termcbas.b . . 3 𝐵 = (Base‘𝐶)
3 termcbasmo.x . . 3 (𝜑𝑋𝐵)
4 termcbasmo.y . . 3 (𝜑𝑌𝐵)
5 termcid.h . . 3 𝐻 = (Hom ‘𝐶)
6 termcid.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
7 termcid.i . . 3 1 = (Id‘𝐶)
81, 2, 3, 4, 5, 6, 7termcid 49491 . 2 (𝜑𝐹 = ( 1𝑋))
91, 2, 3, 4termcbasmo 49488 . . 3 (𝜑𝑋 = 𝑌)
109fveq2d 6830 . 2 (𝜑 → ( 1𝑋) = ( 1𝑌))
118, 10eqtrd 2764 1 (𝜑𝐹 = ( 1𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17139  Hom chom 17191  Idccid 17590  TermCatctermc 49477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-cat 17593  df-cid 17594  df-thinc 49423  df-termc 49478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator