| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uobeqterm | Structured version Visualization version GIF version | ||
| Description: Universal objects and terminal categories. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| uobeqterm.a | ⊢ 𝐴 = (Base‘𝐷) |
| uobeqterm.b | ⊢ 𝐵 = (Base‘𝐸) |
| uobeqterm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| uobeqterm.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| uobeqterm.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| uobeqterm.g | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
| uobeqterm.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| uobeqterm.e | ⊢ (𝜑 → 𝐸 ∈ TermCat) |
| Ref | Expression |
|---|---|
| uobeqterm | ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobeqterm.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ TermCat) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (CatCat‘{𝐷, 𝐸}) = (CatCat‘{𝐷, 𝐸}) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (Base‘(CatCat‘{𝐷, 𝐸})) = (Base‘(CatCat‘{𝐷, 𝐸})) | |
| 4 | uobeqterm.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 5 | prid1g 4713 | . . . . . . . 8 ⊢ (𝐷 ∈ TermCat → 𝐷 ∈ {𝐷, 𝐸}) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ {𝐷, 𝐸}) |
| 7 | 4 | termccd 49510 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 8 | 6, 7 | elind 4150 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ({𝐷, 𝐸} ∩ Cat)) |
| 9 | prex 5375 | . . . . . . . 8 ⊢ {𝐷, 𝐸} ∈ V | |
| 10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐷, 𝐸} ∈ V) |
| 11 | 2, 3, 10 | catcbas 18005 | . . . . . 6 ⊢ (𝜑 → (Base‘(CatCat‘{𝐷, 𝐸})) = ({𝐷, 𝐸} ∩ Cat)) |
| 12 | 8, 11 | eleqtrrd 2834 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (Base‘(CatCat‘{𝐷, 𝐸}))) |
| 13 | prid2g 4714 | . . . . . . . 8 ⊢ (𝐸 ∈ TermCat → 𝐸 ∈ {𝐷, 𝐸}) | |
| 14 | 1, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ {𝐷, 𝐸}) |
| 15 | 1 | termccd 49510 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 16 | 14, 15 | elind 4150 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ({𝐷, 𝐸} ∩ Cat)) |
| 17 | 16, 11 | eleqtrrd 2834 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (Base‘(CatCat‘{𝐷, 𝐸}))) |
| 18 | 2, 3, 12, 17, 4 | termcciso 49547 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ TermCat ↔ 𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸)) |
| 19 | 1, 18 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸) |
| 20 | eqid 2731 | . . . 4 ⊢ (Iso‘(CatCat‘{𝐷, 𝐸})) = (Iso‘(CatCat‘{𝐷, 𝐸})) | |
| 21 | 2 | catccat 18012 | . . . . 5 ⊢ ({𝐷, 𝐸} ∈ V → (CatCat‘{𝐷, 𝐸}) ∈ Cat) |
| 22 | 10, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (CatCat‘{𝐷, 𝐸}) ∈ Cat) |
| 23 | 20, 3, 22, 12, 17 | cic 17703 | . . 3 ⊢ (𝜑 → (𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸 ↔ ∃𝑘 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸))) |
| 24 | 19, 23 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑘 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) |
| 25 | uobeqterm.a | . . 3 ⊢ 𝐴 = (Base‘𝐷) | |
| 26 | uobeqterm.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑋 ∈ 𝐴) |
| 28 | uobeqterm.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 30 | fullfunc 17812 | . . . . 5 ⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) | |
| 31 | uobeqterm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐸) | |
| 32 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) | |
| 33 | 2, 25, 31, 20, 32 | catcisoi 49431 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (𝑘 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ∧ (1st ‘𝑘):𝐴–1-1-onto→𝐵)) |
| 34 | 33 | simpld 494 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 35 | 34 | elin1d 4154 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷 Full 𝐸)) |
| 36 | 30, 35 | sselid 3932 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷 Func 𝐸)) |
| 37 | uobeqterm.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) | |
| 38 | 37 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐺 ∈ (𝐶 Func 𝐸)) |
| 39 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐸 ∈ TermCat) |
| 40 | 29, 36, 38, 39 | cofuterm 49576 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (𝑘 ∘func 𝐹) = 𝐺) |
| 41 | 36 | func1st2nd 49107 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (1st ‘𝑘)(𝐷 Func 𝐸)(2nd ‘𝑘)) |
| 42 | 25, 31, 41 | funcf1 17770 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (1st ‘𝑘):𝐴⟶𝐵) |
| 43 | 42, 27 | ffvelcdmd 7018 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → ((1st ‘𝑘)‘𝑋) ∈ 𝐵) |
| 44 | uobeqterm.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 45 | 44 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑌 ∈ 𝐵) |
| 46 | 39, 31, 43, 45 | termcbasmo 49514 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → ((1st ‘𝑘)‘𝑋) = 𝑌) |
| 47 | 25, 27, 29, 40, 46, 2, 20, 32 | uobeq3 49433 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| 48 | 24, 47 | exlimddv 1936 | 1 ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 {cpr 4578 class class class wbr 5091 dom cdm 5616 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Basecbs 17117 Catccat 17567 Isociso 17650 ≃𝑐 ccic 17699 Func cfunc 17758 Full cful 17808 Faith cfth 17809 CatCatccatc 18002 UP cup 49204 TermCatctermc 49503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-hom 17182 df-cco 17183 df-cat 17571 df-cid 17572 df-homf 17573 df-comf 17574 df-oppc 17615 df-sect 17651 df-inv 17652 df-iso 17653 df-cic 17700 df-func 17762 df-idfu 17763 df-cofu 17764 df-full 17810 df-fth 17811 df-nat 17850 df-fuc 17851 df-inito 17888 df-termo 17889 df-catc 18003 df-up 49205 df-thinc 49449 df-termc 49504 |
| This theorem is referenced by: isinito4 49578 |
| Copyright terms: Public domain | W3C validator |