Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uobeqterm Structured version   Visualization version   GIF version

Theorem uobeqterm 49424
Description: Universal objects and terminal categories. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
uobeqterm.a 𝐴 = (Base‘𝐷)
uobeqterm.b 𝐵 = (Base‘𝐸)
uobeqterm.x (𝜑𝑋𝐴)
uobeqterm.y (𝜑𝑌𝐵)
uobeqterm.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uobeqterm.g (𝜑𝐺 ∈ (𝐶 Func 𝐸))
uobeqterm.d (𝜑𝐷 ∈ TermCat)
uobeqterm.e (𝜑𝐸 ∈ TermCat)
Assertion
Ref Expression
uobeqterm (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))

Proof of Theorem uobeqterm
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uobeqterm.e . . . 4 (𝜑𝐸 ∈ TermCat)
2 eqid 2730 . . . . 5 (CatCat‘{𝐷, 𝐸}) = (CatCat‘{𝐷, 𝐸})
3 eqid 2730 . . . . 5 (Base‘(CatCat‘{𝐷, 𝐸})) = (Base‘(CatCat‘{𝐷, 𝐸}))
4 uobeqterm.d . . . . . . . 8 (𝜑𝐷 ∈ TermCat)
5 prid1g 4732 . . . . . . . 8 (𝐷 ∈ TermCat → 𝐷 ∈ {𝐷, 𝐸})
64, 5syl 17 . . . . . . 7 (𝜑𝐷 ∈ {𝐷, 𝐸})
74termccd 49357 . . . . . . 7 (𝜑𝐷 ∈ Cat)
86, 7elind 4171 . . . . . 6 (𝜑𝐷 ∈ ({𝐷, 𝐸} ∩ Cat))
9 prex 5400 . . . . . . . 8 {𝐷, 𝐸} ∈ V
109a1i 11 . . . . . . 7 (𝜑 → {𝐷, 𝐸} ∈ V)
112, 3, 10catcbas 18069 . . . . . 6 (𝜑 → (Base‘(CatCat‘{𝐷, 𝐸})) = ({𝐷, 𝐸} ∩ Cat))
128, 11eleqtrrd 2832 . . . . 5 (𝜑𝐷 ∈ (Base‘(CatCat‘{𝐷, 𝐸})))
13 prid2g 4733 . . . . . . . 8 (𝐸 ∈ TermCat → 𝐸 ∈ {𝐷, 𝐸})
141, 13syl 17 . . . . . . 7 (𝜑𝐸 ∈ {𝐷, 𝐸})
151termccd 49357 . . . . . . 7 (𝜑𝐸 ∈ Cat)
1614, 15elind 4171 . . . . . 6 (𝜑𝐸 ∈ ({𝐷, 𝐸} ∩ Cat))
1716, 11eleqtrrd 2832 . . . . 5 (𝜑𝐸 ∈ (Base‘(CatCat‘{𝐷, 𝐸})))
182, 3, 12, 17, 4termcciso 49394 . . . 4 (𝜑 → (𝐸 ∈ TermCat ↔ 𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸))
191, 18mpbid 232 . . 3 (𝜑𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸)
20 eqid 2730 . . . 4 (Iso‘(CatCat‘{𝐷, 𝐸})) = (Iso‘(CatCat‘{𝐷, 𝐸}))
212catccat 18076 . . . . 5 ({𝐷, 𝐸} ∈ V → (CatCat‘{𝐷, 𝐸}) ∈ Cat)
2210, 21syl 17 . . . 4 (𝜑 → (CatCat‘{𝐷, 𝐸}) ∈ Cat)
2320, 3, 22, 12, 17cic 17767 . . 3 (𝜑 → (𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸 ↔ ∃𝑘 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)))
2419, 23mpbid 232 . 2 (𝜑 → ∃𝑘 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸))
25 uobeqterm.a . . 3 𝐴 = (Base‘𝐷)
26 uobeqterm.x . . . 4 (𝜑𝑋𝐴)
2726adantr 480 . . 3 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑋𝐴)
28 uobeqterm.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
2928adantr 480 . . 3 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐹 ∈ (𝐶 Func 𝐷))
30 fullfunc 17876 . . . . 5 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
31 uobeqterm.b . . . . . . . 8 𝐵 = (Base‘𝐸)
32 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸))
332, 25, 31, 20, 32catcisoi 49292 . . . . . . 7 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (𝑘 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ∧ (1st𝑘):𝐴1-1-onto𝐵))
3433simpld 494 . . . . . 6 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
3534elin1d 4175 . . . . 5 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷 Full 𝐸))
3630, 35sselid 3952 . . . 4 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷 Func 𝐸))
37 uobeqterm.g . . . . 5 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
3837adantr 480 . . . 4 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐺 ∈ (𝐶 Func 𝐸))
391adantr 480 . . . 4 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐸 ∈ TermCat)
4029, 36, 38, 39cofuterm 49423 . . 3 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (𝑘func 𝐹) = 𝐺)
4136func1st2nd 48993 . . . . . 6 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (1st𝑘)(𝐷 Func 𝐸)(2nd𝑘))
4225, 31, 41funcf1 17834 . . . . 5 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (1st𝑘):𝐴𝐵)
4342, 27ffvelcdmd 7064 . . . 4 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → ((1st𝑘)‘𝑋) ∈ 𝐵)
44 uobeqterm.y . . . . 5 (𝜑𝑌𝐵)
4544adantr 480 . . . 4 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑌𝐵)
4639, 31, 43, 45termcbasmo 49361 . . 3 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → ((1st𝑘)‘𝑋) = 𝑌)
4725, 27, 29, 40, 46, 2, 20, 32uobeq3 49294 . 2 ((𝜑𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))
4824, 47exlimddv 1935 1 (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3455  cin 3921  {cpr 4599   class class class wbr 5115  dom cdm 5646  1-1-ontowf1o 6518  cfv 6519  (class class class)co 7394  1st c1st 7975  2nd c2nd 7976  Basecbs 17185  Catccat 17631  Isociso 17714  𝑐 ccic 17763   Func cfunc 17822   Full cful 17872   Faith cfth 17873  CatCatccatc 18066   UP cup 49081  TermCatctermc 49350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-supp 8149  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-er 8682  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-uz 12810  df-fz 13482  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-homf 17637  df-comf 17638  df-oppc 17679  df-sect 17715  df-inv 17716  df-iso 17717  df-cic 17764  df-func 17826  df-idfu 17827  df-cofu 17828  df-full 17874  df-fth 17875  df-nat 17914  df-fuc 17915  df-inito 17952  df-termo 17953  df-catc 18067  df-up 49082  df-thinc 49296  df-termc 49351
This theorem is referenced by:  isinito4  49425
  Copyright terms: Public domain W3C validator