| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uobeqterm | Structured version Visualization version GIF version | ||
| Description: Universal objects and terminal categories. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| uobeqterm.a | ⊢ 𝐴 = (Base‘𝐷) |
| uobeqterm.b | ⊢ 𝐵 = (Base‘𝐸) |
| uobeqterm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| uobeqterm.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| uobeqterm.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| uobeqterm.g | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
| uobeqterm.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| uobeqterm.e | ⊢ (𝜑 → 𝐸 ∈ TermCat) |
| Ref | Expression |
|---|---|
| uobeqterm | ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobeqterm.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ TermCat) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (CatCat‘{𝐷, 𝐸}) = (CatCat‘{𝐷, 𝐸}) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (Base‘(CatCat‘{𝐷, 𝐸})) = (Base‘(CatCat‘{𝐷, 𝐸})) | |
| 4 | uobeqterm.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 5 | prid1g 4732 | . . . . . . . 8 ⊢ (𝐷 ∈ TermCat → 𝐷 ∈ {𝐷, 𝐸}) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ {𝐷, 𝐸}) |
| 7 | 4 | termccd 49357 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 8 | 6, 7 | elind 4171 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ({𝐷, 𝐸} ∩ Cat)) |
| 9 | prex 5400 | . . . . . . . 8 ⊢ {𝐷, 𝐸} ∈ V | |
| 10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐷, 𝐸} ∈ V) |
| 11 | 2, 3, 10 | catcbas 18069 | . . . . . 6 ⊢ (𝜑 → (Base‘(CatCat‘{𝐷, 𝐸})) = ({𝐷, 𝐸} ∩ Cat)) |
| 12 | 8, 11 | eleqtrrd 2832 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (Base‘(CatCat‘{𝐷, 𝐸}))) |
| 13 | prid2g 4733 | . . . . . . . 8 ⊢ (𝐸 ∈ TermCat → 𝐸 ∈ {𝐷, 𝐸}) | |
| 14 | 1, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ {𝐷, 𝐸}) |
| 15 | 1 | termccd 49357 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 16 | 14, 15 | elind 4171 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ({𝐷, 𝐸} ∩ Cat)) |
| 17 | 16, 11 | eleqtrrd 2832 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (Base‘(CatCat‘{𝐷, 𝐸}))) |
| 18 | 2, 3, 12, 17, 4 | termcciso 49394 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ TermCat ↔ 𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸)) |
| 19 | 1, 18 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸) |
| 20 | eqid 2730 | . . . 4 ⊢ (Iso‘(CatCat‘{𝐷, 𝐸})) = (Iso‘(CatCat‘{𝐷, 𝐸})) | |
| 21 | 2 | catccat 18076 | . . . . 5 ⊢ ({𝐷, 𝐸} ∈ V → (CatCat‘{𝐷, 𝐸}) ∈ Cat) |
| 22 | 10, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (CatCat‘{𝐷, 𝐸}) ∈ Cat) |
| 23 | 20, 3, 22, 12, 17 | cic 17767 | . . 3 ⊢ (𝜑 → (𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸 ↔ ∃𝑘 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸))) |
| 24 | 19, 23 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑘 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) |
| 25 | uobeqterm.a | . . 3 ⊢ 𝐴 = (Base‘𝐷) | |
| 26 | uobeqterm.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑋 ∈ 𝐴) |
| 28 | uobeqterm.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 30 | fullfunc 17876 | . . . . 5 ⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) | |
| 31 | uobeqterm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐸) | |
| 32 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) | |
| 33 | 2, 25, 31, 20, 32 | catcisoi 49292 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (𝑘 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ∧ (1st ‘𝑘):𝐴–1-1-onto→𝐵)) |
| 34 | 33 | simpld 494 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 35 | 34 | elin1d 4175 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷 Full 𝐸)) |
| 36 | 30, 35 | sselid 3952 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷 Func 𝐸)) |
| 37 | uobeqterm.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) | |
| 38 | 37 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐺 ∈ (𝐶 Func 𝐸)) |
| 39 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐸 ∈ TermCat) |
| 40 | 29, 36, 38, 39 | cofuterm 49423 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (𝑘 ∘func 𝐹) = 𝐺) |
| 41 | 36 | func1st2nd 48993 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (1st ‘𝑘)(𝐷 Func 𝐸)(2nd ‘𝑘)) |
| 42 | 25, 31, 41 | funcf1 17834 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (1st ‘𝑘):𝐴⟶𝐵) |
| 43 | 42, 27 | ffvelcdmd 7064 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → ((1st ‘𝑘)‘𝑋) ∈ 𝐵) |
| 44 | uobeqterm.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 45 | 44 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑌 ∈ 𝐵) |
| 46 | 39, 31, 43, 45 | termcbasmo 49361 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → ((1st ‘𝑘)‘𝑋) = 𝑌) |
| 47 | 25, 27, 29, 40, 46, 2, 20, 32 | uobeq3 49294 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| 48 | 24, 47 | exlimddv 1935 | 1 ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3455 ∩ cin 3921 {cpr 4599 class class class wbr 5115 dom cdm 5646 –1-1-onto→wf1o 6518 ‘cfv 6519 (class class class)co 7394 1st c1st 7975 2nd c2nd 7976 Basecbs 17185 Catccat 17631 Isociso 17714 ≃𝑐 ccic 17763 Func cfunc 17822 Full cful 17872 Faith cfth 17873 CatCatccatc 18066 UP cup 49081 TermCatctermc 49350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-homf 17637 df-comf 17638 df-oppc 17679 df-sect 17715 df-inv 17716 df-iso 17717 df-cic 17764 df-func 17826 df-idfu 17827 df-cofu 17828 df-full 17874 df-fth 17875 df-nat 17914 df-fuc 17915 df-inito 17952 df-termo 17953 df-catc 18067 df-up 49082 df-thinc 49296 df-termc 49351 |
| This theorem is referenced by: isinito4 49425 |
| Copyright terms: Public domain | W3C validator |