| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uobeqterm | Structured version Visualization version GIF version | ||
| Description: Universal objects and terminal categories. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| uobeqterm.a | ⊢ 𝐴 = (Base‘𝐷) |
| uobeqterm.b | ⊢ 𝐵 = (Base‘𝐸) |
| uobeqterm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| uobeqterm.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| uobeqterm.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| uobeqterm.g | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
| uobeqterm.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| uobeqterm.e | ⊢ (𝜑 → 𝐸 ∈ TermCat) |
| Ref | Expression |
|---|---|
| uobeqterm | ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobeqterm.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ TermCat) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (CatCat‘{𝐷, 𝐸}) = (CatCat‘{𝐷, 𝐸}) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Base‘(CatCat‘{𝐷, 𝐸})) = (Base‘(CatCat‘{𝐷, 𝐸})) | |
| 4 | uobeqterm.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 5 | prid1g 4724 | . . . . . . . 8 ⊢ (𝐷 ∈ TermCat → 𝐷 ∈ {𝐷, 𝐸}) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ {𝐷, 𝐸}) |
| 7 | 4 | termccd 49468 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 8 | 6, 7 | elind 4163 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ({𝐷, 𝐸} ∩ Cat)) |
| 9 | prex 5392 | . . . . . . . 8 ⊢ {𝐷, 𝐸} ∈ V | |
| 10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐷, 𝐸} ∈ V) |
| 11 | 2, 3, 10 | catcbas 18063 | . . . . . 6 ⊢ (𝜑 → (Base‘(CatCat‘{𝐷, 𝐸})) = ({𝐷, 𝐸} ∩ Cat)) |
| 12 | 8, 11 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (Base‘(CatCat‘{𝐷, 𝐸}))) |
| 13 | prid2g 4725 | . . . . . . . 8 ⊢ (𝐸 ∈ TermCat → 𝐸 ∈ {𝐷, 𝐸}) | |
| 14 | 1, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ {𝐷, 𝐸}) |
| 15 | 1 | termccd 49468 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 16 | 14, 15 | elind 4163 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ({𝐷, 𝐸} ∩ Cat)) |
| 17 | 16, 11 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (Base‘(CatCat‘{𝐷, 𝐸}))) |
| 18 | 2, 3, 12, 17, 4 | termcciso 49505 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ TermCat ↔ 𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸)) |
| 19 | 1, 18 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸) |
| 20 | eqid 2729 | . . . 4 ⊢ (Iso‘(CatCat‘{𝐷, 𝐸})) = (Iso‘(CatCat‘{𝐷, 𝐸})) | |
| 21 | 2 | catccat 18070 | . . . . 5 ⊢ ({𝐷, 𝐸} ∈ V → (CatCat‘{𝐷, 𝐸}) ∈ Cat) |
| 22 | 10, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (CatCat‘{𝐷, 𝐸}) ∈ Cat) |
| 23 | 20, 3, 22, 12, 17 | cic 17761 | . . 3 ⊢ (𝜑 → (𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸 ↔ ∃𝑘 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸))) |
| 24 | 19, 23 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑘 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) |
| 25 | uobeqterm.a | . . 3 ⊢ 𝐴 = (Base‘𝐷) | |
| 26 | uobeqterm.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑋 ∈ 𝐴) |
| 28 | uobeqterm.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 30 | fullfunc 17870 | . . . . 5 ⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) | |
| 31 | uobeqterm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐸) | |
| 32 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) | |
| 33 | 2, 25, 31, 20, 32 | catcisoi 49389 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (𝑘 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ∧ (1st ‘𝑘):𝐴–1-1-onto→𝐵)) |
| 34 | 33 | simpld 494 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 35 | 34 | elin1d 4167 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷 Full 𝐸)) |
| 36 | 30, 35 | sselid 3944 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷 Func 𝐸)) |
| 37 | uobeqterm.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) | |
| 38 | 37 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐺 ∈ (𝐶 Func 𝐸)) |
| 39 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐸 ∈ TermCat) |
| 40 | 29, 36, 38, 39 | cofuterm 49534 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (𝑘 ∘func 𝐹) = 𝐺) |
| 41 | 36 | func1st2nd 49065 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (1st ‘𝑘)(𝐷 Func 𝐸)(2nd ‘𝑘)) |
| 42 | 25, 31, 41 | funcf1 17828 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (1st ‘𝑘):𝐴⟶𝐵) |
| 43 | 42, 27 | ffvelcdmd 7057 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → ((1st ‘𝑘)‘𝑋) ∈ 𝐵) |
| 44 | uobeqterm.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 45 | 44 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑌 ∈ 𝐵) |
| 46 | 39, 31, 43, 45 | termcbasmo 49472 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → ((1st ‘𝑘)‘𝑋) = 𝑌) |
| 47 | 25, 27, 29, 40, 46, 2, 20, 32 | uobeq3 49391 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| 48 | 24, 47 | exlimddv 1935 | 1 ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 {cpr 4591 class class class wbr 5107 dom cdm 5638 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 Basecbs 17179 Catccat 17625 Isociso 17708 ≃𝑐 ccic 17757 Func cfunc 17816 Full cful 17866 Faith cfth 17867 CatCatccatc 18060 UP cup 49162 TermCatctermc 49461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-cat 17629 df-cid 17630 df-homf 17631 df-comf 17632 df-oppc 17673 df-sect 17709 df-inv 17710 df-iso 17711 df-cic 17758 df-func 17820 df-idfu 17821 df-cofu 17822 df-full 17868 df-fth 17869 df-nat 17908 df-fuc 17909 df-inito 17946 df-termo 17947 df-catc 18061 df-up 49163 df-thinc 49407 df-termc 49462 |
| This theorem is referenced by: isinito4 49536 |
| Copyright terms: Public domain | W3C validator |