| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uobeqterm | Structured version Visualization version GIF version | ||
| Description: Universal objects and terminal categories. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| uobeqterm.a | ⊢ 𝐴 = (Base‘𝐷) |
| uobeqterm.b | ⊢ 𝐵 = (Base‘𝐸) |
| uobeqterm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| uobeqterm.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| uobeqterm.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| uobeqterm.g | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
| uobeqterm.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| uobeqterm.e | ⊢ (𝜑 → 𝐸 ∈ TermCat) |
| Ref | Expression |
|---|---|
| uobeqterm | ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobeqterm.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ TermCat) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (CatCat‘{𝐷, 𝐸}) = (CatCat‘{𝐷, 𝐸}) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Base‘(CatCat‘{𝐷, 𝐸})) = (Base‘(CatCat‘{𝐷, 𝐸})) | |
| 4 | uobeqterm.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 5 | prid1g 4714 | . . . . . . . 8 ⊢ (𝐷 ∈ TermCat → 𝐷 ∈ {𝐷, 𝐸}) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ {𝐷, 𝐸}) |
| 7 | 4 | termccd 49465 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 8 | 6, 7 | elind 4153 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ({𝐷, 𝐸} ∩ Cat)) |
| 9 | prex 5379 | . . . . . . . 8 ⊢ {𝐷, 𝐸} ∈ V | |
| 10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐷, 𝐸} ∈ V) |
| 11 | 2, 3, 10 | catcbas 18026 | . . . . . 6 ⊢ (𝜑 → (Base‘(CatCat‘{𝐷, 𝐸})) = ({𝐷, 𝐸} ∩ Cat)) |
| 12 | 8, 11 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (Base‘(CatCat‘{𝐷, 𝐸}))) |
| 13 | prid2g 4715 | . . . . . . . 8 ⊢ (𝐸 ∈ TermCat → 𝐸 ∈ {𝐷, 𝐸}) | |
| 14 | 1, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ {𝐷, 𝐸}) |
| 15 | 1 | termccd 49465 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 16 | 14, 15 | elind 4153 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ({𝐷, 𝐸} ∩ Cat)) |
| 17 | 16, 11 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (Base‘(CatCat‘{𝐷, 𝐸}))) |
| 18 | 2, 3, 12, 17, 4 | termcciso 49502 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ TermCat ↔ 𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸)) |
| 19 | 1, 18 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸) |
| 20 | eqid 2729 | . . . 4 ⊢ (Iso‘(CatCat‘{𝐷, 𝐸})) = (Iso‘(CatCat‘{𝐷, 𝐸})) | |
| 21 | 2 | catccat 18033 | . . . . 5 ⊢ ({𝐷, 𝐸} ∈ V → (CatCat‘{𝐷, 𝐸}) ∈ Cat) |
| 22 | 10, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (CatCat‘{𝐷, 𝐸}) ∈ Cat) |
| 23 | 20, 3, 22, 12, 17 | cic 17724 | . . 3 ⊢ (𝜑 → (𝐷( ≃𝑐 ‘(CatCat‘{𝐷, 𝐸}))𝐸 ↔ ∃𝑘 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸))) |
| 24 | 19, 23 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑘 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) |
| 25 | uobeqterm.a | . . 3 ⊢ 𝐴 = (Base‘𝐷) | |
| 26 | uobeqterm.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑋 ∈ 𝐴) |
| 28 | uobeqterm.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 30 | fullfunc 17833 | . . . . 5 ⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) | |
| 31 | uobeqterm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐸) | |
| 32 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) | |
| 33 | 2, 25, 31, 20, 32 | catcisoi 49386 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (𝑘 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ∧ (1st ‘𝑘):𝐴–1-1-onto→𝐵)) |
| 34 | 33 | simpld 494 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 35 | 34 | elin1d 4157 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷 Full 𝐸)) |
| 36 | 30, 35 | sselid 3935 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑘 ∈ (𝐷 Func 𝐸)) |
| 37 | uobeqterm.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) | |
| 38 | 37 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐺 ∈ (𝐶 Func 𝐸)) |
| 39 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝐸 ∈ TermCat) |
| 40 | 29, 36, 38, 39 | cofuterm 49531 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (𝑘 ∘func 𝐹) = 𝐺) |
| 41 | 36 | func1st2nd 49062 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (1st ‘𝑘)(𝐷 Func 𝐸)(2nd ‘𝑘)) |
| 42 | 25, 31, 41 | funcf1 17791 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → (1st ‘𝑘):𝐴⟶𝐵) |
| 43 | 42, 27 | ffvelcdmd 7023 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → ((1st ‘𝑘)‘𝑋) ∈ 𝐵) |
| 44 | uobeqterm.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 45 | 44 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → 𝑌 ∈ 𝐵) |
| 46 | 39, 31, 43, 45 | termcbasmo 49469 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → ((1st ‘𝑘)‘𝑋) = 𝑌) |
| 47 | 25, 27, 29, 40, 46, 2, 20, 32 | uobeq3 49388 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷(Iso‘(CatCat‘{𝐷, 𝐸}))𝐸)) → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| 48 | 24, 47 | exlimddv 1935 | 1 ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 {cpr 4581 class class class wbr 5095 dom cdm 5623 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 Basecbs 17138 Catccat 17588 Isociso 17671 ≃𝑐 ccic 17720 Func cfunc 17779 Full cful 17829 Faith cfth 17830 CatCatccatc 18023 UP cup 49159 TermCatctermc 49458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-hom 17203 df-cco 17204 df-cat 17592 df-cid 17593 df-homf 17594 df-comf 17595 df-oppc 17636 df-sect 17672 df-inv 17673 df-iso 17674 df-cic 17721 df-func 17783 df-idfu 17784 df-cofu 17785 df-full 17831 df-fth 17832 df-nat 17871 df-fuc 17872 df-inito 17909 df-termo 17910 df-catc 18024 df-up 49160 df-thinc 49404 df-termc 49459 |
| This theorem is referenced by: isinito4 49533 |
| Copyright terms: Public domain | W3C validator |