| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termfucterm | Structured version Visualization version GIF version | ||
| Description: All functors between two terminal categories are isomorphisms. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| termfucterm.c | ⊢ 𝐶 = (CatCat‘𝑈) |
| termfucterm.b | ⊢ 𝐵 = (Base‘𝐶) |
| termfucterm.i | ⊢ 𝐼 = (Iso‘𝐶) |
| termfucterm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termfucterm.xt | ⊢ (𝜑 → 𝑋 ∈ TermCat) |
| termfucterm.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| termfucterm.yt | ⊢ (𝜑 → 𝑌 ∈ TermCat) |
| Ref | Expression |
|---|---|
| termfucterm | ⊢ (𝜑 → (𝑋 Func 𝑌) = (𝑋𝐼𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termfucterm.yt | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ TermCat) | |
| 2 | termfucterm.c | . . . . . . . 8 ⊢ 𝐶 = (CatCat‘𝑈) | |
| 3 | termfucterm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | termfucterm.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | termfucterm.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | termfucterm.xt | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ TermCat) | |
| 7 | 2, 3, 4, 5, 6 | termcciso 49641 | . . . . . . 7 ⊢ (𝜑 → (𝑌 ∈ TermCat ↔ 𝑋( ≃𝑐 ‘𝐶)𝑌)) |
| 8 | 1, 7 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| 9 | termfucterm.i | . . . . . . 7 ⊢ 𝐼 = (Iso‘𝐶) | |
| 10 | cicrcl2 49168 | . . . . . . . 8 ⊢ (𝑋( ≃𝑐 ‘𝐶)𝑌 → 𝐶 ∈ Cat) | |
| 11 | 8, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 12 | 9, 3, 11, 4, 5 | cic 17708 | . . . . . 6 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑔 𝑔 ∈ (𝑋𝐼𝑌))) |
| 13 | 8, 12 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ∃𝑔 𝑔 ∈ (𝑋𝐼𝑌)) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋 Func 𝑌)) → ∃𝑔 𝑔 ∈ (𝑋𝐼𝑌)) |
| 15 | eqid 2733 | . . . . . . . 8 ⊢ (𝑋 FuncCat 𝑌) = (𝑋 FuncCat 𝑌) | |
| 16 | 6 | termccd 49604 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ Cat) |
| 17 | 15, 16, 1 | fucterm 49667 | . . . . . . 7 ⊢ (𝜑 → (𝑋 FuncCat 𝑌) ∈ TermCat) |
| 18 | 17 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → (𝑋 FuncCat 𝑌) ∈ TermCat) |
| 19 | 15 | fucbas 17872 | . . . . . 6 ⊢ (𝑋 Func 𝑌) = (Base‘(𝑋 FuncCat 𝑌)) |
| 20 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋 Func 𝑌)) | |
| 21 | fullfunc 17817 | . . . . . . 7 ⊢ (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌) | |
| 22 | eqid 2733 | . . . . . . . . . 10 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 23 | eqid 2733 | . . . . . . . . . 10 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 24 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑔 ∈ (𝑋𝐼𝑌)) | |
| 25 | 2, 22, 23, 9, 24 | catcisoi 49525 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → (𝑔 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘𝑔):(Base‘𝑋)–1-1-onto→(Base‘𝑌))) |
| 26 | 25 | simpld 494 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑔 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))) |
| 27 | 26 | elin1d 4153 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑔 ∈ (𝑋 Full 𝑌)) |
| 28 | 21, 27 | sselid 3928 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑔 ∈ (𝑋 Func 𝑌)) |
| 29 | 18, 19, 20, 28 | termcbasmo 49608 | . . . . 5 ⊢ (((𝜑 ∧ 𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑓 = 𝑔) |
| 30 | 29, 24 | eqeltrd 2833 | . . . 4 ⊢ (((𝜑 ∧ 𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋𝐼𝑌)) |
| 31 | 14, 30 | exlimddv 1936 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋 Func 𝑌)) → 𝑓 ∈ (𝑋𝐼𝑌)) |
| 32 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋𝐼𝑌)) | |
| 33 | 2, 22, 23, 9, 32 | catcisoi 49525 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐼𝑌)) → (𝑓 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘𝑓):(Base‘𝑋)–1-1-onto→(Base‘𝑌))) |
| 34 | 33 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))) |
| 35 | 34 | elin1d 4153 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋 Full 𝑌)) |
| 36 | 21, 35 | sselid 3928 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋 Func 𝑌)) |
| 37 | 31, 36 | impbida 800 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝑋 Func 𝑌) ↔ 𝑓 ∈ (𝑋𝐼𝑌))) |
| 38 | 37 | eqrdv 2731 | 1 ⊢ (𝜑 → (𝑋 Func 𝑌) = (𝑋𝐼𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∩ cin 3897 class class class wbr 5093 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 Basecbs 17122 Catccat 17572 Isociso 17655 ≃𝑐 ccic 17704 Func cfunc 17763 Full cful 17813 Faith cfth 17814 FuncCat cfuc 17854 CatCatccatc 18007 TermCatctermc 49597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-hom 17187 df-cco 17188 df-cat 17576 df-cid 17577 df-homf 17578 df-comf 17579 df-oppc 17620 df-sect 17656 df-inv 17657 df-iso 17658 df-cic 17705 df-func 17767 df-idfu 17768 df-cofu 17769 df-full 17815 df-fth 17816 df-nat 17855 df-fuc 17856 df-inito 17893 df-termo 17894 df-catc 18008 df-thinc 49543 df-termc 49598 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |