Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termfucterm Structured version   Visualization version   GIF version

Theorem termfucterm 49533
Description: All functors between two terminal categories are isomorphisms. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
termfucterm.c 𝐶 = (CatCat‘𝑈)
termfucterm.b 𝐵 = (Base‘𝐶)
termfucterm.i 𝐼 = (Iso‘𝐶)
termfucterm.x (𝜑𝑋𝐵)
termfucterm.xt (𝜑𝑋 ∈ TermCat)
termfucterm.y (𝜑𝑌𝐵)
termfucterm.yt (𝜑𝑌 ∈ TermCat)
Assertion
Ref Expression
termfucterm (𝜑 → (𝑋 Func 𝑌) = (𝑋𝐼𝑌))

Proof of Theorem termfucterm
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 termfucterm.yt . . . . . . 7 (𝜑𝑌 ∈ TermCat)
2 termfucterm.c . . . . . . . 8 𝐶 = (CatCat‘𝑈)
3 termfucterm.b . . . . . . . 8 𝐵 = (Base‘𝐶)
4 termfucterm.x . . . . . . . 8 (𝜑𝑋𝐵)
5 termfucterm.y . . . . . . . 8 (𝜑𝑌𝐵)
6 termfucterm.xt . . . . . . . 8 (𝜑𝑋 ∈ TermCat)
72, 3, 4, 5, 6termcciso 49505 . . . . . . 7 (𝜑 → (𝑌 ∈ TermCat ↔ 𝑋( ≃𝑐𝐶)𝑌))
81, 7mpbid 232 . . . . . 6 (𝜑𝑋( ≃𝑐𝐶)𝑌)
9 termfucterm.i . . . . . . 7 𝐼 = (Iso‘𝐶)
10 cicrcl2 49032 . . . . . . . 8 (𝑋( ≃𝑐𝐶)𝑌𝐶 ∈ Cat)
118, 10syl 17 . . . . . . 7 (𝜑𝐶 ∈ Cat)
129, 3, 11, 4, 5cic 17761 . . . . . 6 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑔 𝑔 ∈ (𝑋𝐼𝑌)))
138, 12mpbid 232 . . . . 5 (𝜑 → ∃𝑔 𝑔 ∈ (𝑋𝐼𝑌))
1413adantr 480 . . . 4 ((𝜑𝑓 ∈ (𝑋 Func 𝑌)) → ∃𝑔 𝑔 ∈ (𝑋𝐼𝑌))
15 eqid 2729 . . . . . . . 8 (𝑋 FuncCat 𝑌) = (𝑋 FuncCat 𝑌)
166termccd 49468 . . . . . . . 8 (𝜑𝑋 ∈ Cat)
1715, 16, 1fucterm 49531 . . . . . . 7 (𝜑 → (𝑋 FuncCat 𝑌) ∈ TermCat)
1817ad2antrr 726 . . . . . 6 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → (𝑋 FuncCat 𝑌) ∈ TermCat)
1915fucbas 17925 . . . . . 6 (𝑋 Func 𝑌) = (Base‘(𝑋 FuncCat 𝑌))
20 simplr 768 . . . . . 6 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋 Func 𝑌))
21 fullfunc 17870 . . . . . . 7 (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌)
22 eqid 2729 . . . . . . . . . 10 (Base‘𝑋) = (Base‘𝑋)
23 eqid 2729 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
24 simpr 484 . . . . . . . . . 10 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑔 ∈ (𝑋𝐼𝑌))
252, 22, 23, 9, 24catcisoi 49389 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → (𝑔 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝑔):(Base‘𝑋)–1-1-onto→(Base‘𝑌)))
2625simpld 494 . . . . . . . 8 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑔 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
2726elin1d 4167 . . . . . . 7 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑔 ∈ (𝑋 Full 𝑌))
2821, 27sselid 3944 . . . . . 6 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑔 ∈ (𝑋 Func 𝑌))
2918, 19, 20, 28termcbasmo 49472 . . . . 5 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑓 = 𝑔)
3029, 24eqeltrd 2828 . . . 4 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋𝐼𝑌))
3114, 30exlimddv 1935 . . 3 ((𝜑𝑓 ∈ (𝑋 Func 𝑌)) → 𝑓 ∈ (𝑋𝐼𝑌))
32 simpr 484 . . . . . . 7 ((𝜑𝑓 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋𝐼𝑌))
332, 22, 23, 9, 32catcisoi 49389 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐼𝑌)) → (𝑓 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝑓):(Base‘𝑋)–1-1-onto→(Base‘𝑌)))
3433simpld 494 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
3534elin1d 4167 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋 Full 𝑌))
3621, 35sselid 3944 . . 3 ((𝜑𝑓 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋 Func 𝑌))
3731, 36impbida 800 . 2 (𝜑 → (𝑓 ∈ (𝑋 Func 𝑌) ↔ 𝑓 ∈ (𝑋𝐼𝑌)))
3837eqrdv 2727 1 (𝜑 → (𝑋 Func 𝑌) = (𝑋𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  cin 3913   class class class wbr 5107  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  1st c1st 7966  Basecbs 17179  Catccat 17625  Isociso 17708  𝑐 ccic 17757   Func cfunc 17816   Full cful 17866   Faith cfth 17867   FuncCat cfuc 17907  CatCatccatc 18060  TermCatctermc 49461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-homf 17631  df-comf 17632  df-oppc 17673  df-sect 17709  df-inv 17710  df-iso 17711  df-cic 17758  df-func 17820  df-idfu 17821  df-cofu 17822  df-full 17868  df-fth 17869  df-nat 17908  df-fuc 17909  df-inito 17946  df-termo 17947  df-catc 18061  df-thinc 49407  df-termc 49462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator