Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termfucterm Structured version   Visualization version   GIF version

Theorem termfucterm 49669
Description: All functors between two terminal categories are isomorphisms. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
termfucterm.c 𝐶 = (CatCat‘𝑈)
termfucterm.b 𝐵 = (Base‘𝐶)
termfucterm.i 𝐼 = (Iso‘𝐶)
termfucterm.x (𝜑𝑋𝐵)
termfucterm.xt (𝜑𝑋 ∈ TermCat)
termfucterm.y (𝜑𝑌𝐵)
termfucterm.yt (𝜑𝑌 ∈ TermCat)
Assertion
Ref Expression
termfucterm (𝜑 → (𝑋 Func 𝑌) = (𝑋𝐼𝑌))

Proof of Theorem termfucterm
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 termfucterm.yt . . . . . . 7 (𝜑𝑌 ∈ TermCat)
2 termfucterm.c . . . . . . . 8 𝐶 = (CatCat‘𝑈)
3 termfucterm.b . . . . . . . 8 𝐵 = (Base‘𝐶)
4 termfucterm.x . . . . . . . 8 (𝜑𝑋𝐵)
5 termfucterm.y . . . . . . . 8 (𝜑𝑌𝐵)
6 termfucterm.xt . . . . . . . 8 (𝜑𝑋 ∈ TermCat)
72, 3, 4, 5, 6termcciso 49641 . . . . . . 7 (𝜑 → (𝑌 ∈ TermCat ↔ 𝑋( ≃𝑐𝐶)𝑌))
81, 7mpbid 232 . . . . . 6 (𝜑𝑋( ≃𝑐𝐶)𝑌)
9 termfucterm.i . . . . . . 7 𝐼 = (Iso‘𝐶)
10 cicrcl2 49168 . . . . . . . 8 (𝑋( ≃𝑐𝐶)𝑌𝐶 ∈ Cat)
118, 10syl 17 . . . . . . 7 (𝜑𝐶 ∈ Cat)
129, 3, 11, 4, 5cic 17708 . . . . . 6 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑔 𝑔 ∈ (𝑋𝐼𝑌)))
138, 12mpbid 232 . . . . 5 (𝜑 → ∃𝑔 𝑔 ∈ (𝑋𝐼𝑌))
1413adantr 480 . . . 4 ((𝜑𝑓 ∈ (𝑋 Func 𝑌)) → ∃𝑔 𝑔 ∈ (𝑋𝐼𝑌))
15 eqid 2733 . . . . . . . 8 (𝑋 FuncCat 𝑌) = (𝑋 FuncCat 𝑌)
166termccd 49604 . . . . . . . 8 (𝜑𝑋 ∈ Cat)
1715, 16, 1fucterm 49667 . . . . . . 7 (𝜑 → (𝑋 FuncCat 𝑌) ∈ TermCat)
1817ad2antrr 726 . . . . . 6 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → (𝑋 FuncCat 𝑌) ∈ TermCat)
1915fucbas 17872 . . . . . 6 (𝑋 Func 𝑌) = (Base‘(𝑋 FuncCat 𝑌))
20 simplr 768 . . . . . 6 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋 Func 𝑌))
21 fullfunc 17817 . . . . . . 7 (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌)
22 eqid 2733 . . . . . . . . . 10 (Base‘𝑋) = (Base‘𝑋)
23 eqid 2733 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
24 simpr 484 . . . . . . . . . 10 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑔 ∈ (𝑋𝐼𝑌))
252, 22, 23, 9, 24catcisoi 49525 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → (𝑔 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝑔):(Base‘𝑋)–1-1-onto→(Base‘𝑌)))
2625simpld 494 . . . . . . . 8 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑔 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
2726elin1d 4153 . . . . . . 7 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑔 ∈ (𝑋 Full 𝑌))
2821, 27sselid 3928 . . . . . 6 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑔 ∈ (𝑋 Func 𝑌))
2918, 19, 20, 28termcbasmo 49608 . . . . 5 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑓 = 𝑔)
3029, 24eqeltrd 2833 . . . 4 (((𝜑𝑓 ∈ (𝑋 Func 𝑌)) ∧ 𝑔 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋𝐼𝑌))
3114, 30exlimddv 1936 . . 3 ((𝜑𝑓 ∈ (𝑋 Func 𝑌)) → 𝑓 ∈ (𝑋𝐼𝑌))
32 simpr 484 . . . . . . 7 ((𝜑𝑓 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋𝐼𝑌))
332, 22, 23, 9, 32catcisoi 49525 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐼𝑌)) → (𝑓 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝑓):(Base‘𝑋)–1-1-onto→(Base‘𝑌)))
3433simpld 494 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
3534elin1d 4153 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋 Full 𝑌))
3621, 35sselid 3928 . . 3 ((𝜑𝑓 ∈ (𝑋𝐼𝑌)) → 𝑓 ∈ (𝑋 Func 𝑌))
3731, 36impbida 800 . 2 (𝜑 → (𝑓 ∈ (𝑋 Func 𝑌) ↔ 𝑓 ∈ (𝑋𝐼𝑌)))
3837eqrdv 2731 1 (𝜑 → (𝑋 Func 𝑌) = (𝑋𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  cin 3897   class class class wbr 5093  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  1st c1st 7925  Basecbs 17122  Catccat 17572  Isociso 17655  𝑐 ccic 17704   Func cfunc 17763   Full cful 17813   Faith cfth 17814   FuncCat cfuc 17854  CatCatccatc 18007  TermCatctermc 49597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-hom 17187  df-cco 17188  df-cat 17576  df-cid 17577  df-homf 17578  df-comf 17579  df-oppc 17620  df-sect 17656  df-inv 17657  df-iso 17658  df-cic 17705  df-func 17767  df-idfu 17768  df-cofu 17769  df-full 17815  df-fth 17816  df-nat 17855  df-fuc 17856  df-inito 17893  df-termo 17894  df-catc 18008  df-thinc 49543  df-termc 49598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator