| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termchom2 | Structured version Visualization version GIF version | ||
| Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| termchom.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termchom.b | ⊢ 𝐵 = (Base‘𝐶) |
| termchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| termchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| termchom.i | ⊢ 1 = (Id‘𝐶) |
| termchom2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| termchom2 | ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑍)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termchom.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | termchom.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | termchom.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | termchom.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | termchom.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | termchom.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | termchom 49461 | . 2 ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑋)}) |
| 8 | termchom2.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 9 | 1, 2, 3, 8 | termcbasmo 49456 | . . . 4 ⊢ (𝜑 → 𝑋 = 𝑍) |
| 10 | 9 | fveq2d 6830 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑋) = ( 1 ‘𝑍)) |
| 11 | 10 | sneqd 4591 | . 2 ⊢ (𝜑 → {( 1 ‘𝑋)} = {( 1 ‘𝑍)}) |
| 12 | 7, 11 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑍)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4579 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 Idccid 17589 TermCatctermc 49445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-cat 17592 df-cid 17593 df-thinc 49391 df-termc 49446 |
| This theorem is referenced by: diag1f1olem 49506 |
| Copyright terms: Public domain | W3C validator |