| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termchom2 | Structured version Visualization version GIF version | ||
| Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| termchom.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termchom.b | ⊢ 𝐵 = (Base‘𝐶) |
| termchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| termchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| termchom.i | ⊢ 1 = (Id‘𝐶) |
| termchom2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| termchom2 | ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑍)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termchom.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | termchom.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | termchom.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | termchom.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | termchom.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | termchom.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | termchom 49234 | . 2 ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑋)}) |
| 8 | termchom2.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 9 | 1, 2, 3, 8 | termcbasmo 49229 | . . . 4 ⊢ (𝜑 → 𝑋 = 𝑍) |
| 10 | 9 | fveq2d 6877 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑋) = ( 1 ‘𝑍)) |
| 11 | 10 | sneqd 4611 | . 2 ⊢ (𝜑 → {( 1 ‘𝑋)} = {( 1 ‘𝑍)}) |
| 12 | 7, 11 | eqtrd 2769 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑍)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {csn 4599 ‘cfv 6528 (class class class)co 7400 Basecbs 17215 Hom chom 17269 Idccid 17664 TermCatctermc 49219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-cat 17667 df-cid 17668 df-thinc 49167 df-termc 49220 |
| This theorem is referenced by: diag1f1olem 49279 |
| Copyright terms: Public domain | W3C validator |