Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termchom2 Structured version   Visualization version   GIF version

Theorem termchom2 49595
Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 21-Oct-2025.)
Hypotheses
Ref Expression
termchom.c (𝜑𝐶 ∈ TermCat)
termchom.b 𝐵 = (Base‘𝐶)
termchom.x (𝜑𝑋𝐵)
termchom.y (𝜑𝑌𝐵)
termchom.h 𝐻 = (Hom ‘𝐶)
termchom.i 1 = (Id‘𝐶)
termchom2.z (𝜑𝑍𝐵)
Assertion
Ref Expression
termchom2 (𝜑 → (𝑋𝐻𝑌) = {( 1𝑍)})

Proof of Theorem termchom2
StepHypRef Expression
1 termchom.c . . 3 (𝜑𝐶 ∈ TermCat)
2 termchom.b . . 3 𝐵 = (Base‘𝐶)
3 termchom.x . . 3 (𝜑𝑋𝐵)
4 termchom.y . . 3 (𝜑𝑌𝐵)
5 termchom.h . . 3 𝐻 = (Hom ‘𝐶)
6 termchom.i . . 3 1 = (Id‘𝐶)
71, 2, 3, 4, 5, 6termchom 49594 . 2 (𝜑 → (𝑋𝐻𝑌) = {( 1𝑋)})
8 termchom2.z . . . . 5 (𝜑𝑍𝐵)
91, 2, 3, 8termcbasmo 49589 . . . 4 (𝜑𝑋 = 𝑍)
109fveq2d 6832 . . 3 (𝜑 → ( 1𝑋) = ( 1𝑍))
1110sneqd 4587 . 2 (𝜑 → {( 1𝑋)} = {( 1𝑍)})
127, 11eqtrd 2766 1 (𝜑 → (𝑋𝐻𝑌) = {( 1𝑍)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {csn 4575  cfv 6487  (class class class)co 7352  Basecbs 17126  Hom chom 17178  Idccid 17577  TermCatctermc 49578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-cat 17580  df-cid 17581  df-thinc 49524  df-termc 49579
This theorem is referenced by:  diag1f1olem  49639
  Copyright terms: Public domain W3C validator