Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termchom2 Structured version   Visualization version   GIF version

Theorem termchom2 49354
Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 21-Oct-2025.)
Hypotheses
Ref Expression
termchom.c (𝜑𝐶 ∈ TermCat)
termchom.b 𝐵 = (Base‘𝐶)
termchom.x (𝜑𝑋𝐵)
termchom.y (𝜑𝑌𝐵)
termchom.h 𝐻 = (Hom ‘𝐶)
termchom.i 1 = (Id‘𝐶)
termchom2.z (𝜑𝑍𝐵)
Assertion
Ref Expression
termchom2 (𝜑 → (𝑋𝐻𝑌) = {( 1𝑍)})

Proof of Theorem termchom2
StepHypRef Expression
1 termchom.c . . 3 (𝜑𝐶 ∈ TermCat)
2 termchom.b . . 3 𝐵 = (Base‘𝐶)
3 termchom.x . . 3 (𝜑𝑋𝐵)
4 termchom.y . . 3 (𝜑𝑌𝐵)
5 termchom.h . . 3 𝐻 = (Hom ‘𝐶)
6 termchom.i . . 3 1 = (Id‘𝐶)
71, 2, 3, 4, 5, 6termchom 49353 . 2 (𝜑 → (𝑋𝐻𝑌) = {( 1𝑋)})
8 termchom2.z . . . . 5 (𝜑𝑍𝐵)
91, 2, 3, 8termcbasmo 49348 . . . 4 (𝜑𝑋 = 𝑍)
109fveq2d 6885 . . 3 (𝜑 → ( 1𝑋) = ( 1𝑍))
1110sneqd 4618 . 2 (𝜑 → {( 1𝑋)} = {( 1𝑍)})
127, 11eqtrd 2771 1 (𝜑 → (𝑋𝐻𝑌) = {( 1𝑍)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4606  cfv 6536  (class class class)co 7410  Basecbs 17233  Hom chom 17287  Idccid 17682  TermCatctermc 49338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-cat 17685  df-cid 17686  df-thinc 49284  df-termc 49339
This theorem is referenced by:  diag1f1olem  49398
  Copyright terms: Public domain W3C validator