MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem9a Structured version   Visualization version   GIF version

Theorem tfrlem9a 7824
Description: Lemma for transfinite recursion. Without using ax-rep 5045, show that all the restrictions of recs are sets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem9a (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem9a
Dummy variables 𝑔 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . 5 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem7 7821 . . . 4 Fun recs(𝐹)
3 funfvop 6643 . . . 4 ((Fun recs(𝐹) ∧ 𝐵 ∈ dom recs(𝐹)) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹))
42, 3mpan 677 . . 3 (𝐵 ∈ dom recs(𝐹) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹))
51recsfval 7819 . . . . 5 recs(𝐹) = 𝐴
65eleq2i 2851 . . . 4 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹) ↔ ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝐴)
7 eluni 4711 . . . 4 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝐴 ↔ ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
86, 7bitri 267 . . 3 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹) ↔ ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
94, 8sylib 210 . 2 (𝐵 ∈ dom recs(𝐹) → ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
10 simprr 760 . . . 4 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → 𝑔𝐴)
11 vex 3412 . . . . 5 𝑔 ∈ V
121, 11tfrlem3a 7815 . . . 4 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
1310, 12sylib 210 . . 3 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
142a1i 11 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → Fun recs(𝐹))
15 simplrr 765 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔𝐴)
16 elssuni 4737 . . . . . . . . . 10 (𝑔𝐴𝑔 𝐴)
1715, 16syl 17 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔 𝐴)
1817, 5syl6sseqr 3902 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔 ⊆ recs(𝐹))
19 fndm 6285 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
2019ad2antll 716 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → dom 𝑔 = 𝑧)
21 simprl 758 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑧 ∈ On)
2220, 21eqeltrd 2860 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → dom 𝑔 ∈ On)
23 eloni 6036 . . . . . . . . . 10 (dom 𝑔 ∈ On → Ord dom 𝑔)
2422, 23syl 17 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → Ord dom 𝑔)
25 simpll 754 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ∈ dom recs(𝐹))
26 fvexd 6511 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹)‘𝐵) ∈ V)
27 simplrl 764 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔)
28 df-br 4926 . . . . . . . . . . 11 (𝐵𝑔(recs(𝐹)‘𝐵) ↔ ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔)
2927, 28sylibr 226 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵𝑔(recs(𝐹)‘𝐵))
30 breldmg 5624 . . . . . . . . . 10 ((𝐵 ∈ dom recs(𝐹) ∧ (recs(𝐹)‘𝐵) ∈ V ∧ 𝐵𝑔(recs(𝐹)‘𝐵)) → 𝐵 ∈ dom 𝑔)
3125, 26, 29, 30syl3anc 1351 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ∈ dom 𝑔)
32 ordelss 6042 . . . . . . . . 9 ((Ord dom 𝑔𝐵 ∈ dom 𝑔) → 𝐵 ⊆ dom 𝑔)
3324, 31, 32syl2anc 576 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ⊆ dom 𝑔)
34 fun2ssres 6229 . . . . . . . 8 ((Fun recs(𝐹) ∧ 𝑔 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑔) → (recs(𝐹) ↾ 𝐵) = (𝑔𝐵))
3514, 18, 33, 34syl3anc 1351 . . . . . . 7 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹) ↾ 𝐵) = (𝑔𝐵))
3611resex 5741 . . . . . . . 8 (𝑔𝐵) ∈ V
3736a1i 11 . . . . . . 7 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (𝑔𝐵) ∈ V)
3835, 37eqeltrd 2860 . . . . . 6 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹) ↾ 𝐵) ∈ V)
3938expr 449 . . . . 5 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ 𝑧 ∈ On) → (𝑔 Fn 𝑧 → (recs(𝐹) ↾ 𝐵) ∈ V))
4039adantrd 484 . . . 4 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ 𝑧 ∈ On) → ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) → (recs(𝐹) ↾ 𝐵) ∈ V))
4140rexlimdva 3223 . . 3 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) → (recs(𝐹) ↾ 𝐵) ∈ V))
4213, 41mpd 15 . 2 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → (recs(𝐹) ↾ 𝐵) ∈ V)
439, 42exlimddv 1894 1 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wex 1742  wcel 2050  {cab 2752  wral 3082  wrex 3083  Vcvv 3409  wss 3823  cop 4441   cuni 4708   class class class wbr 4925  dom cdm 5403  cres 5405  Ord word 6025  Oncon0 6026  Fun wfun 6179   Fn wfn 6180  cfv 6185  recscrecs 7809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-iota 6149  df-fun 6187  df-fn 6188  df-fv 6193  df-wrecs 7748  df-recs 7810
This theorem is referenced by:  tfrlem15  7830  tfrlem16  7831  rdgseg  7860
  Copyright terms: Public domain W3C validator