Step | Hyp | Ref
| Expression |
1 | | tfrlem.1 |
. . . . 5
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
2 | 1 | tfrlem7 8185 |
. . . 4
⊢ Fun
recs(𝐹) |
3 | | funfvop 6909 |
. . . 4
⊢ ((Fun
recs(𝐹) ∧ 𝐵 ∈ dom recs(𝐹)) → 〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ recs(𝐹)) |
4 | 2, 3 | mpan 686 |
. . 3
⊢ (𝐵 ∈ dom recs(𝐹) → 〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ recs(𝐹)) |
5 | 1 | recsfval 8183 |
. . . . 5
⊢
recs(𝐹) = ∪ 𝐴 |
6 | 5 | eleq2i 2830 |
. . . 4
⊢
(〈𝐵,
(recs(𝐹)‘𝐵)〉 ∈ recs(𝐹) ↔ 〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ ∪
𝐴) |
7 | | eluni 4839 |
. . . 4
⊢
(〈𝐵,
(recs(𝐹)‘𝐵)〉 ∈ ∪ 𝐴
↔ ∃𝑔(〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) |
8 | 6, 7 | bitri 274 |
. . 3
⊢
(〈𝐵,
(recs(𝐹)‘𝐵)〉 ∈ recs(𝐹) ↔ ∃𝑔(〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) |
9 | 4, 8 | sylib 217 |
. 2
⊢ (𝐵 ∈ dom recs(𝐹) → ∃𝑔(〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) |
10 | | simprr 769 |
. . . 4
⊢ ((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) → 𝑔 ∈ 𝐴) |
11 | | vex 3426 |
. . . . 5
⊢ 𝑔 ∈ V |
12 | 1, 11 | tfrlem3a 8179 |
. . . 4
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎)))) |
13 | 10, 12 | sylib 217 |
. . 3
⊢ ((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) → ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎)))) |
14 | 2 | a1i 11 |
. . . . . . . 8
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → Fun recs(𝐹)) |
15 | | simplrr 774 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔 ∈ 𝐴) |
16 | | elssuni 4868 |
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝐴 → 𝑔 ⊆ ∪ 𝐴) |
17 | 15, 16 | syl 17 |
. . . . . . . . 9
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔 ⊆ ∪ 𝐴) |
18 | 17, 5 | sseqtrrdi 3968 |
. . . . . . . 8
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔 ⊆ recs(𝐹)) |
19 | | fndm 6520 |
. . . . . . . . . . . 12
⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) |
20 | 19 | ad2antll 725 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → dom 𝑔 = 𝑧) |
21 | | simprl 767 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑧 ∈ On) |
22 | 20, 21 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → dom 𝑔 ∈ On) |
23 | | eloni 6261 |
. . . . . . . . . 10
⊢ (dom
𝑔 ∈ On → Ord dom
𝑔) |
24 | 22, 23 | syl 17 |
. . . . . . . . 9
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → Ord dom 𝑔) |
25 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ∈ dom recs(𝐹)) |
26 | | fvexd 6771 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹)‘𝐵) ∈ V) |
27 | | simplrl 773 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔) |
28 | | df-br 5071 |
. . . . . . . . . . 11
⊢ (𝐵𝑔(recs(𝐹)‘𝐵) ↔ 〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔) |
29 | 27, 28 | sylibr 233 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵𝑔(recs(𝐹)‘𝐵)) |
30 | | breldmg 5807 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ dom recs(𝐹) ∧ (recs(𝐹)‘𝐵) ∈ V ∧ 𝐵𝑔(recs(𝐹)‘𝐵)) → 𝐵 ∈ dom 𝑔) |
31 | 25, 26, 29, 30 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ∈ dom 𝑔) |
32 | | ordelss 6267 |
. . . . . . . . 9
⊢ ((Ord dom
𝑔 ∧ 𝐵 ∈ dom 𝑔) → 𝐵 ⊆ dom 𝑔) |
33 | 24, 31, 32 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ⊆ dom 𝑔) |
34 | | fun2ssres 6463 |
. . . . . . . 8
⊢ ((Fun
recs(𝐹) ∧ 𝑔 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑔) → (recs(𝐹) ↾ 𝐵) = (𝑔 ↾ 𝐵)) |
35 | 14, 18, 33, 34 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹) ↾ 𝐵) = (𝑔 ↾ 𝐵)) |
36 | 11 | resex 5928 |
. . . . . . . 8
⊢ (𝑔 ↾ 𝐵) ∈ V |
37 | 36 | a1i 11 |
. . . . . . 7
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (𝑔 ↾ 𝐵) ∈ V) |
38 | 35, 37 | eqeltrd 2839 |
. . . . . 6
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹) ↾ 𝐵) ∈ V) |
39 | 38 | expr 456 |
. . . . 5
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ 𝑧 ∈ On) → (𝑔 Fn 𝑧 → (recs(𝐹) ↾ 𝐵) ∈ V)) |
40 | 39 | adantrd 491 |
. . . 4
⊢ (((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) ∧ 𝑧 ∈ On) → ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) → (recs(𝐹) ↾ 𝐵) ∈ V)) |
41 | 40 | rexlimdva 3212 |
. . 3
⊢ ((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) → (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) → (recs(𝐹) ↾ 𝐵) ∈ V)) |
42 | 13, 41 | mpd 15 |
. 2
⊢ ((𝐵 ∈ dom recs(𝐹) ∧ (〈𝐵, (recs(𝐹)‘𝐵)〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) → (recs(𝐹) ↾ 𝐵) ∈ V) |
43 | 9, 42 | exlimddv 1939 |
1
⊢ (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V) |