MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem9a Structured version   Visualization version   GIF version

Theorem tfrlem9a 8305
Description: Lemma for transfinite recursion. Without using ax-rep 5215, show that all the restrictions of recs are sets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem9a (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem9a
Dummy variables 𝑔 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . 5 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem7 8302 . . . 4 Fun recs(𝐹)
3 funfvop 6983 . . . 4 ((Fun recs(𝐹) ∧ 𝐵 ∈ dom recs(𝐹)) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹))
42, 3mpan 690 . . 3 (𝐵 ∈ dom recs(𝐹) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹))
51recsfval 8300 . . . . 5 recs(𝐹) = 𝐴
65eleq2i 2823 . . . 4 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹) ↔ ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝐴)
7 eluni 4859 . . . 4 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝐴 ↔ ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
86, 7bitri 275 . . 3 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹) ↔ ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
94, 8sylib 218 . 2 (𝐵 ∈ dom recs(𝐹) → ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
10 simprr 772 . . . 4 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → 𝑔𝐴)
11 vex 3440 . . . . 5 𝑔 ∈ V
121, 11tfrlem3a 8296 . . . 4 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
1310, 12sylib 218 . . 3 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
142a1i 11 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → Fun recs(𝐹))
15 simplrr 777 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔𝐴)
16 elssuni 4887 . . . . . . . . . 10 (𝑔𝐴𝑔 𝐴)
1715, 16syl 17 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔 𝐴)
1817, 5sseqtrrdi 3971 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔 ⊆ recs(𝐹))
19 fndm 6584 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
2019ad2antll 729 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → dom 𝑔 = 𝑧)
21 simprl 770 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑧 ∈ On)
2220, 21eqeltrd 2831 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → dom 𝑔 ∈ On)
23 eloni 6316 . . . . . . . . . 10 (dom 𝑔 ∈ On → Ord dom 𝑔)
2422, 23syl 17 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → Ord dom 𝑔)
25 simpll 766 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ∈ dom recs(𝐹))
26 fvexd 6837 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹)‘𝐵) ∈ V)
27 simplrl 776 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔)
28 df-br 5090 . . . . . . . . . . 11 (𝐵𝑔(recs(𝐹)‘𝐵) ↔ ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔)
2927, 28sylibr 234 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵𝑔(recs(𝐹)‘𝐵))
30 breldmg 5848 . . . . . . . . . 10 ((𝐵 ∈ dom recs(𝐹) ∧ (recs(𝐹)‘𝐵) ∈ V ∧ 𝐵𝑔(recs(𝐹)‘𝐵)) → 𝐵 ∈ dom 𝑔)
3125, 26, 29, 30syl3anc 1373 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ∈ dom 𝑔)
32 ordelss 6322 . . . . . . . . 9 ((Ord dom 𝑔𝐵 ∈ dom 𝑔) → 𝐵 ⊆ dom 𝑔)
3324, 31, 32syl2anc 584 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ⊆ dom 𝑔)
34 fun2ssres 6526 . . . . . . . 8 ((Fun recs(𝐹) ∧ 𝑔 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑔) → (recs(𝐹) ↾ 𝐵) = (𝑔𝐵))
3514, 18, 33, 34syl3anc 1373 . . . . . . 7 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹) ↾ 𝐵) = (𝑔𝐵))
3611resex 5977 . . . . . . . 8 (𝑔𝐵) ∈ V
3736a1i 11 . . . . . . 7 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (𝑔𝐵) ∈ V)
3835, 37eqeltrd 2831 . . . . . 6 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹) ↾ 𝐵) ∈ V)
3938expr 456 . . . . 5 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ 𝑧 ∈ On) → (𝑔 Fn 𝑧 → (recs(𝐹) ↾ 𝐵) ∈ V))
4039adantrd 491 . . . 4 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ 𝑧 ∈ On) → ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) → (recs(𝐹) ↾ 𝐵) ∈ V))
4140rexlimdva 3133 . . 3 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) → (recs(𝐹) ↾ 𝐵) ∈ V))
4213, 41mpd 15 . 2 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → (recs(𝐹) ↾ 𝐵) ∈ V)
439, 42exlimddv 1936 1 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wrex 3056  Vcvv 3436  wss 3897  cop 4579   cuni 4856   class class class wbr 5089  dom cdm 5614  cres 5616  Ord word 6305  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  cfv 6481  recscrecs 8290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291
This theorem is referenced by:  tfrlem15  8311  tfrlem16  8312  rdgseg  8341
  Copyright terms: Public domain W3C validator