MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem9a Structured version   Visualization version   GIF version

Theorem tfrlem9a 8425
Description: Lemma for transfinite recursion. Without using ax-rep 5285, show that all the restrictions of recs are sets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem9a (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem9a
Dummy variables 𝑔 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . 5 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem7 8422 . . . 4 Fun recs(𝐹)
3 funfvop 7070 . . . 4 ((Fun recs(𝐹) ∧ 𝐵 ∈ dom recs(𝐹)) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹))
42, 3mpan 690 . . 3 (𝐵 ∈ dom recs(𝐹) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹))
51recsfval 8420 . . . . 5 recs(𝐹) = 𝐴
65eleq2i 2831 . . . 4 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹) ↔ ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝐴)
7 eluni 4915 . . . 4 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝐴 ↔ ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
86, 7bitri 275 . . 3 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹) ↔ ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
94, 8sylib 218 . 2 (𝐵 ∈ dom recs(𝐹) → ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
10 simprr 773 . . . 4 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → 𝑔𝐴)
11 vex 3482 . . . . 5 𝑔 ∈ V
121, 11tfrlem3a 8416 . . . 4 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
1310, 12sylib 218 . . 3 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
142a1i 11 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → Fun recs(𝐹))
15 simplrr 778 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔𝐴)
16 elssuni 4942 . . . . . . . . . 10 (𝑔𝐴𝑔 𝐴)
1715, 16syl 17 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔 𝐴)
1817, 5sseqtrrdi 4047 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔 ⊆ recs(𝐹))
19 fndm 6672 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
2019ad2antll 729 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → dom 𝑔 = 𝑧)
21 simprl 771 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑧 ∈ On)
2220, 21eqeltrd 2839 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → dom 𝑔 ∈ On)
23 eloni 6396 . . . . . . . . . 10 (dom 𝑔 ∈ On → Ord dom 𝑔)
2422, 23syl 17 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → Ord dom 𝑔)
25 simpll 767 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ∈ dom recs(𝐹))
26 fvexd 6922 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹)‘𝐵) ∈ V)
27 simplrl 777 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔)
28 df-br 5149 . . . . . . . . . . 11 (𝐵𝑔(recs(𝐹)‘𝐵) ↔ ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔)
2927, 28sylibr 234 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵𝑔(recs(𝐹)‘𝐵))
30 breldmg 5923 . . . . . . . . . 10 ((𝐵 ∈ dom recs(𝐹) ∧ (recs(𝐹)‘𝐵) ∈ V ∧ 𝐵𝑔(recs(𝐹)‘𝐵)) → 𝐵 ∈ dom 𝑔)
3125, 26, 29, 30syl3anc 1370 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ∈ dom 𝑔)
32 ordelss 6402 . . . . . . . . 9 ((Ord dom 𝑔𝐵 ∈ dom 𝑔) → 𝐵 ⊆ dom 𝑔)
3324, 31, 32syl2anc 584 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ⊆ dom 𝑔)
34 fun2ssres 6613 . . . . . . . 8 ((Fun recs(𝐹) ∧ 𝑔 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑔) → (recs(𝐹) ↾ 𝐵) = (𝑔𝐵))
3514, 18, 33, 34syl3anc 1370 . . . . . . 7 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹) ↾ 𝐵) = (𝑔𝐵))
3611resex 6049 . . . . . . . 8 (𝑔𝐵) ∈ V
3736a1i 11 . . . . . . 7 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (𝑔𝐵) ∈ V)
3835, 37eqeltrd 2839 . . . . . 6 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹) ↾ 𝐵) ∈ V)
3938expr 456 . . . . 5 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ 𝑧 ∈ On) → (𝑔 Fn 𝑧 → (recs(𝐹) ↾ 𝐵) ∈ V))
4039adantrd 491 . . . 4 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ 𝑧 ∈ On) → ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) → (recs(𝐹) ↾ 𝐵) ∈ V))
4140rexlimdva 3153 . . 3 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) → (recs(𝐹) ↾ 𝐵) ∈ V))
4213, 41mpd 15 . 2 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → (recs(𝐹) ↾ 𝐵) ∈ V)
439, 42exlimddv 1933 1 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wral 3059  wrex 3068  Vcvv 3478  wss 3963  cop 4637   cuni 4912   class class class wbr 5148  dom cdm 5689  cres 5691  Ord word 6385  Oncon0 6386  Fun wfun 6557   Fn wfn 6558  cfv 6563  recscrecs 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-ov 7434  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410
This theorem is referenced by:  tfrlem15  8431  tfrlem16  8432  rdgseg  8461
  Copyright terms: Public domain W3C validator