| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirinv | Structured version Visualization version GIF version | ||
| Description: The only invariant point of a point inversion Theorem 7.3 of [Schwabhauser] p. 49, Theorem 7.10 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirinv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mirinv | ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐺 ∈ TarskiG) |
| 6 | mirinv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐵 ∈ 𝑃) |
| 8 | mirval.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ 𝑃) |
| 10 | mirval.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
| 11 | mirval.s | . . . . . 6 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 12 | mirfv.m | . . . . . 6 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 13 | 1, 2, 3, 10, 11, 5, 9, 12, 7 | mirbtwn 28642 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) |
| 14 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → (𝑀‘𝐵) = 𝐵) | |
| 15 | 14 | oveq1d 7425 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → ((𝑀‘𝐵)𝐼𝐵) = (𝐵𝐼𝐵)) |
| 16 | 13, 15 | eleqtrd 2837 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵)) |
| 17 | 1, 2, 3, 5, 7, 9, 16 | axtgbtwnid 28450 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐵 = 𝐴) |
| 18 | 17 | eqcomd 2742 | . 2 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 = 𝐵) |
| 19 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐺 ∈ TarskiG) |
| 20 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝑃) |
| 21 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝑃) |
| 22 | eqidd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴 − 𝐵) = (𝐴 − 𝐵)) | |
| 23 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
| 24 | 1, 2, 3, 19, 21, 21 | tgbtwntriv1 28475 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 ∈ (𝐵𝐼𝐵)) |
| 25 | 23, 24 | eqeltrd 2835 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵)) |
| 26 | 1, 2, 3, 10, 11, 19, 20, 12, 21, 21, 22, 25 | ismir 28643 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 = (𝑀‘𝐵)) |
| 27 | 26 | eqcomd 2742 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝑀‘𝐵) = 𝐵) |
| 28 | 18, 27 | impbida 800 | 1 ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 distcds 17285 TarskiGcstrkg 28411 Itvcitv 28417 LineGclng 28418 pInvGcmir 28636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-trkgc 28432 df-trkgb 28433 df-trkgcb 28434 df-trkg 28437 df-mir 28637 |
| This theorem is referenced by: mirne 28651 mircinv 28652 mirln2 28661 miduniq 28669 miduniq2 28671 krippenlem 28674 ragflat2 28687 footexALT 28702 footexlem1 28703 footexlem2 28704 colperpexlem2 28715 colperpexlem3 28716 opphllem6 28736 lmimid 28778 hypcgrlem2 28784 |
| Copyright terms: Public domain | W3C validator |