![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirinv | Structured version Visualization version GIF version |
Description: The only invariant point of a point inversion Theorem 7.3 of [Schwabhauser] p. 49, Theorem 7.10 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirinv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
mirinv | ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐺 ∈ TarskiG) |
6 | mirinv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐵 ∈ 𝑃) |
8 | mirval.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ 𝑃) |
10 | mirval.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
11 | mirval.s | . . . . . 6 ⊢ 𝑆 = (pInvG‘𝐺) | |
12 | mirfv.m | . . . . . 6 ⊢ 𝑀 = (𝑆‘𝐴) | |
13 | 1, 2, 3, 10, 11, 5, 9, 12, 7 | mirbtwn 28378 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) |
14 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → (𝑀‘𝐵) = 𝐵) | |
15 | 14 | oveq1d 7416 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → ((𝑀‘𝐵)𝐼𝐵) = (𝐵𝐼𝐵)) |
16 | 13, 15 | eleqtrd 2827 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵)) |
17 | 1, 2, 3, 5, 7, 9, 16 | axtgbtwnid 28186 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐵 = 𝐴) |
18 | 17 | eqcomd 2730 | . 2 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 = 𝐵) |
19 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐺 ∈ TarskiG) |
20 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝑃) |
21 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝑃) |
22 | eqidd 2725 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴 − 𝐵) = (𝐴 − 𝐵)) | |
23 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
24 | 1, 2, 3, 19, 21, 21 | tgbtwntriv1 28211 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 ∈ (𝐵𝐼𝐵)) |
25 | 23, 24 | eqeltrd 2825 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵)) |
26 | 1, 2, 3, 10, 11, 19, 20, 12, 21, 21, 22, 25 | ismir 28379 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 = (𝑀‘𝐵)) |
27 | 26 | eqcomd 2730 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝑀‘𝐵) = 𝐵) |
28 | 18, 27 | impbida 798 | 1 ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ‘cfv 6533 (class class class)co 7401 Basecbs 17143 distcds 17205 TarskiGcstrkg 28147 Itvcitv 28153 LineGclng 28154 pInvGcmir 28372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-trkgc 28168 df-trkgb 28169 df-trkgcb 28170 df-trkg 28173 df-mir 28373 |
This theorem is referenced by: mirne 28387 mircinv 28388 mirln2 28397 miduniq 28405 miduniq2 28407 krippenlem 28410 ragflat2 28423 footexALT 28438 footexlem1 28439 footexlem2 28440 colperpexlem2 28451 colperpexlem3 28452 opphllem6 28472 lmimid 28514 hypcgrlem2 28520 |
Copyright terms: Public domain | W3C validator |