Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mirinv | Structured version Visualization version GIF version |
Description: The only invariant point of a point inversion Theorem 7.3 of [Schwabhauser] p. 49, Theorem 7.10 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirinv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
mirinv | ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐺 ∈ TarskiG) |
6 | mirinv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | 6 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐵 ∈ 𝑃) |
8 | mirval.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ 𝑃) |
10 | mirval.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
11 | mirval.s | . . . . . 6 ⊢ 𝑆 = (pInvG‘𝐺) | |
12 | mirfv.m | . . . . . 6 ⊢ 𝑀 = (𝑆‘𝐴) | |
13 | 1, 2, 3, 10, 11, 5, 9, 12, 7 | mirbtwn 27019 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) |
14 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → (𝑀‘𝐵) = 𝐵) | |
15 | 14 | oveq1d 7290 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → ((𝑀‘𝐵)𝐼𝐵) = (𝐵𝐼𝐵)) |
16 | 13, 15 | eleqtrd 2841 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵)) |
17 | 1, 2, 3, 5, 7, 9, 16 | axtgbtwnid 26827 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐵 = 𝐴) |
18 | 17 | eqcomd 2744 | . 2 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 = 𝐵) |
19 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐺 ∈ TarskiG) |
20 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝑃) |
21 | 6 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝑃) |
22 | eqidd 2739 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴 − 𝐵) = (𝐴 − 𝐵)) | |
23 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
24 | 1, 2, 3, 19, 21, 21 | tgbtwntriv1 26852 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 ∈ (𝐵𝐼𝐵)) |
25 | 23, 24 | eqeltrd 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵)) |
26 | 1, 2, 3, 10, 11, 19, 20, 12, 21, 21, 22, 25 | ismir 27020 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 = (𝑀‘𝐵)) |
27 | 26 | eqcomd 2744 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝑀‘𝐵) = 𝐵) |
28 | 18, 27 | impbida 798 | 1 ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 distcds 16971 TarskiGcstrkg 26788 Itvcitv 26794 LineGclng 26795 pInvGcmir 27013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-trkgc 26809 df-trkgb 26810 df-trkgcb 26811 df-trkg 26814 df-mir 27014 |
This theorem is referenced by: mirne 27028 mircinv 27029 mirln2 27038 miduniq 27046 miduniq2 27048 krippenlem 27051 ragflat2 27064 footexALT 27079 footexlem1 27080 footexlem2 27081 colperpexlem2 27092 colperpexlem3 27093 opphllem6 27113 lmimid 27155 hypcgrlem2 27161 |
Copyright terms: Public domain | W3C validator |