MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirinv Structured version   Visualization version   GIF version

Theorem mirinv 28629
Description: The only invariant point of a point inversion Theorem 7.3 of [Schwabhauser] p. 49, Theorem 7.10 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirinv.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirinv (𝜑 → ((𝑀𝐵) = 𝐵𝐴 = 𝐵))

Proof of Theorem mirinv
StepHypRef Expression
1 mirval.p . . . 4 𝑃 = (Base‘𝐺)
2 mirval.d . . . 4 = (dist‘𝐺)
3 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
4 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐺 ∈ TarskiG)
6 mirinv.b . . . . 5 (𝜑𝐵𝑃)
76adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐵𝑃)
8 mirval.a . . . . 5 (𝜑𝐴𝑃)
98adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴𝑃)
10 mirval.l . . . . . 6 𝐿 = (LineG‘𝐺)
11 mirval.s . . . . . 6 𝑆 = (pInvG‘𝐺)
12 mirfv.m . . . . . 6 𝑀 = (𝑆𝐴)
131, 2, 3, 10, 11, 5, 9, 12, 7mirbtwn 28621 . . . . 5 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))
14 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → (𝑀𝐵) = 𝐵)
1514oveq1d 7368 . . . . 5 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → ((𝑀𝐵)𝐼𝐵) = (𝐵𝐼𝐵))
1613, 15eleqtrd 2830 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵))
171, 2, 3, 5, 7, 9, 16axtgbtwnid 28429 . . 3 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐵 = 𝐴)
1817eqcomd 2735 . 2 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴 = 𝐵)
194adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
208adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴𝑃)
216adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐵𝑃)
22 eqidd 2730 . . . 4 ((𝜑𝐴 = 𝐵) → (𝐴 𝐵) = (𝐴 𝐵))
23 simpr 484 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
241, 2, 3, 19, 21, 21tgbtwntriv1 28454 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐵 ∈ (𝐵𝐼𝐵))
2523, 24eqeltrd 2828 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵))
261, 2, 3, 10, 11, 19, 20, 12, 21, 21, 22, 25ismir 28622 . . 3 ((𝜑𝐴 = 𝐵) → 𝐵 = (𝑀𝐵))
2726eqcomd 2735 . 2 ((𝜑𝐴 = 𝐵) → (𝑀𝐵) = 𝐵)
2818, 27impbida 800 1 (𝜑 → ((𝑀𝐵) = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  distcds 17188  TarskiGcstrkg 28390  Itvcitv 28396  LineGclng 28397  pInvGcmir 28615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-trkgc 28411  df-trkgb 28412  df-trkgcb 28413  df-trkg 28416  df-mir 28616
This theorem is referenced by:  mirne  28630  mircinv  28631  mirln2  28640  miduniq  28648  miduniq2  28650  krippenlem  28653  ragflat2  28666  footexALT  28681  footexlem1  28682  footexlem2  28683  colperpexlem2  28694  colperpexlem3  28695  opphllem6  28715  lmimid  28757  hypcgrlem2  28763
  Copyright terms: Public domain W3C validator