![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirinv | Structured version Visualization version GIF version |
Description: The only invariant point of a point inversion Theorem 7.3 of [Schwabhauser] p. 49, Theorem 7.10 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirinv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
mirinv | ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐺 ∈ TarskiG) |
6 | mirinv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | 6 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐵 ∈ 𝑃) |
8 | mirval.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | 8 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ 𝑃) |
10 | mirval.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
11 | mirval.s | . . . . . 6 ⊢ 𝑆 = (pInvG‘𝐺) | |
12 | mirfv.m | . . . . . 6 ⊢ 𝑀 = (𝑆‘𝐴) | |
13 | 1, 2, 3, 10, 11, 5, 9, 12, 7 | mirbtwn 25774 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) |
14 | simpr 471 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → (𝑀‘𝐵) = 𝐵) | |
15 | 14 | oveq1d 6808 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → ((𝑀‘𝐵)𝐼𝐵) = (𝐵𝐼𝐵)) |
16 | 13, 15 | eleqtrd 2852 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵)) |
17 | 1, 2, 3, 5, 7, 9, 16 | axtgbtwnid 25586 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐵 = 𝐴) |
18 | 17 | eqcomd 2777 | . 2 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 = 𝐵) |
19 | 4 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐺 ∈ TarskiG) |
20 | 8 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝑃) |
21 | 6 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝑃) |
22 | eqidd 2772 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴 − 𝐵) = (𝐴 − 𝐵)) | |
23 | simpr 471 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
24 | 1, 2, 3, 19, 21, 21 | tgbtwntriv1 25607 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 ∈ (𝐵𝐼𝐵)) |
25 | 23, 24 | eqeltrd 2850 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵)) |
26 | 1, 2, 3, 10, 11, 19, 20, 12, 21, 21, 22, 25 | ismir 25775 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 = (𝑀‘𝐵)) |
27 | 26 | eqcomd 2777 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝑀‘𝐵) = 𝐵) |
28 | 18, 27 | impbida 802 | 1 ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 distcds 16158 TarskiGcstrkg 25550 Itvcitv 25556 LineGclng 25557 pInvGcmir 25768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-trkgc 25568 df-trkgb 25569 df-trkgcb 25570 df-trkg 25573 df-mir 25769 |
This theorem is referenced by: mirne 25783 mircinv 25784 mirln2 25793 miduniq 25801 miduniq2 25803 krippenlem 25806 ragflat2 25819 footex 25834 colperpexlem2 25844 colperpexlem3 25845 opphllem6 25865 lmimid 25907 hypcgrlem2 25913 |
Copyright terms: Public domain | W3C validator |