MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirinv Structured version   Visualization version   GIF version

Theorem mirinv 28692
Description: The only invariant point of a point inversion Theorem 7.3 of [Schwabhauser] p. 49, Theorem 7.10 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirinv.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirinv (𝜑 → ((𝑀𝐵) = 𝐵𝐴 = 𝐵))

Proof of Theorem mirinv
StepHypRef Expression
1 mirval.p . . . 4 𝑃 = (Base‘𝐺)
2 mirval.d . . . 4 = (dist‘𝐺)
3 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
4 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐺 ∈ TarskiG)
6 mirinv.b . . . . 5 (𝜑𝐵𝑃)
76adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐵𝑃)
8 mirval.a . . . . 5 (𝜑𝐴𝑃)
98adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴𝑃)
10 mirval.l . . . . . 6 𝐿 = (LineG‘𝐺)
11 mirval.s . . . . . 6 𝑆 = (pInvG‘𝐺)
12 mirfv.m . . . . . 6 𝑀 = (𝑆𝐴)
131, 2, 3, 10, 11, 5, 9, 12, 7mirbtwn 28684 . . . . 5 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))
14 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → (𝑀𝐵) = 𝐵)
1514oveq1d 7463 . . . . 5 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → ((𝑀𝐵)𝐼𝐵) = (𝐵𝐼𝐵))
1613, 15eleqtrd 2846 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵))
171, 2, 3, 5, 7, 9, 16axtgbtwnid 28492 . . 3 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐵 = 𝐴)
1817eqcomd 2746 . 2 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴 = 𝐵)
194adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
208adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴𝑃)
216adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐵𝑃)
22 eqidd 2741 . . . 4 ((𝜑𝐴 = 𝐵) → (𝐴 𝐵) = (𝐴 𝐵))
23 simpr 484 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
241, 2, 3, 19, 21, 21tgbtwntriv1 28517 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐵 ∈ (𝐵𝐼𝐵))
2523, 24eqeltrd 2844 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵))
261, 2, 3, 10, 11, 19, 20, 12, 21, 21, 22, 25ismir 28685 . . 3 ((𝜑𝐴 = 𝐵) → 𝐵 = (𝑀𝐵))
2726eqcomd 2746 . 2 ((𝜑𝐴 = 𝐵) → (𝑀𝐵) = 𝐵)
2818, 27impbida 800 1 (𝜑 → ((𝑀𝐵) = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460  pInvGcmir 28678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479  df-mir 28679
This theorem is referenced by:  mirne  28693  mircinv  28694  mirln2  28703  miduniq  28711  miduniq2  28713  krippenlem  28716  ragflat2  28729  footexALT  28744  footexlem1  28745  footexlem2  28746  colperpexlem2  28757  colperpexlem3  28758  opphllem6  28778  lmimid  28820  hypcgrlem2  28826
  Copyright terms: Public domain W3C validator