MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirinv Structured version   Visualization version   GIF version

Theorem mirinv 28593
Description: The only invariant point of a point inversion Theorem 7.3 of [Schwabhauser] p. 49, Theorem 7.10 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirinv.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirinv (𝜑 → ((𝑀𝐵) = 𝐵𝐴 = 𝐵))

Proof of Theorem mirinv
StepHypRef Expression
1 mirval.p . . . 4 𝑃 = (Base‘𝐺)
2 mirval.d . . . 4 = (dist‘𝐺)
3 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
4 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐺 ∈ TarskiG)
6 mirinv.b . . . . 5 (𝜑𝐵𝑃)
76adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐵𝑃)
8 mirval.a . . . . 5 (𝜑𝐴𝑃)
98adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴𝑃)
10 mirval.l . . . . . 6 𝐿 = (LineG‘𝐺)
11 mirval.s . . . . . 6 𝑆 = (pInvG‘𝐺)
12 mirfv.m . . . . . 6 𝑀 = (𝑆𝐴)
131, 2, 3, 10, 11, 5, 9, 12, 7mirbtwn 28585 . . . . 5 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))
14 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → (𝑀𝐵) = 𝐵)
1514oveq1d 7402 . . . . 5 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → ((𝑀𝐵)𝐼𝐵) = (𝐵𝐼𝐵))
1613, 15eleqtrd 2830 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵))
171, 2, 3, 5, 7, 9, 16axtgbtwnid 28393 . . 3 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐵 = 𝐴)
1817eqcomd 2735 . 2 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴 = 𝐵)
194adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
208adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴𝑃)
216adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐵𝑃)
22 eqidd 2730 . . . 4 ((𝜑𝐴 = 𝐵) → (𝐴 𝐵) = (𝐴 𝐵))
23 simpr 484 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
241, 2, 3, 19, 21, 21tgbtwntriv1 28418 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐵 ∈ (𝐵𝐼𝐵))
2523, 24eqeltrd 2828 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵))
261, 2, 3, 10, 11, 19, 20, 12, 21, 21, 22, 25ismir 28586 . . 3 ((𝜑𝐴 = 𝐵) → 𝐵 = (𝑀𝐵))
2726eqcomd 2735 . 2 ((𝜑𝐴 = 𝐵) → (𝑀𝐵) = 𝐵)
2818, 27impbida 800 1 (𝜑 → ((𝑀𝐵) = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  distcds 17229  TarskiGcstrkg 28354  Itvcitv 28360  LineGclng 28361  pInvGcmir 28579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-trkgc 28375  df-trkgb 28376  df-trkgcb 28377  df-trkg 28380  df-mir 28580
This theorem is referenced by:  mirne  28594  mircinv  28595  mirln2  28604  miduniq  28612  miduniq2  28614  krippenlem  28617  ragflat2  28630  footexALT  28645  footexlem1  28646  footexlem2  28647  colperpexlem2  28658  colperpexlem3  28659  opphllem6  28679  lmimid  28721  hypcgrlem2  28727
  Copyright terms: Public domain W3C validator