MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirinv Structured version   Visualization version   GIF version

Theorem mirinv 26931
Description: The only invariant point of a point inversion Theorem 7.3 of [Schwabhauser] p. 49, Theorem 7.10 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirinv.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirinv (𝜑 → ((𝑀𝐵) = 𝐵𝐴 = 𝐵))

Proof of Theorem mirinv
StepHypRef Expression
1 mirval.p . . . 4 𝑃 = (Base‘𝐺)
2 mirval.d . . . 4 = (dist‘𝐺)
3 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
4 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐺 ∈ TarskiG)
6 mirinv.b . . . . 5 (𝜑𝐵𝑃)
76adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐵𝑃)
8 mirval.a . . . . 5 (𝜑𝐴𝑃)
98adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴𝑃)
10 mirval.l . . . . . 6 𝐿 = (LineG‘𝐺)
11 mirval.s . . . . . 6 𝑆 = (pInvG‘𝐺)
12 mirfv.m . . . . . 6 𝑀 = (𝑆𝐴)
131, 2, 3, 10, 11, 5, 9, 12, 7mirbtwn 26923 . . . . 5 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))
14 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → (𝑀𝐵) = 𝐵)
1514oveq1d 7270 . . . . 5 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → ((𝑀𝐵)𝐼𝐵) = (𝐵𝐼𝐵))
1613, 15eleqtrd 2841 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵))
171, 2, 3, 5, 7, 9, 16axtgbtwnid 26731 . . 3 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐵 = 𝐴)
1817eqcomd 2744 . 2 ((𝜑 ∧ (𝑀𝐵) = 𝐵) → 𝐴 = 𝐵)
194adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
208adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴𝑃)
216adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐵𝑃)
22 eqidd 2739 . . . 4 ((𝜑𝐴 = 𝐵) → (𝐴 𝐵) = (𝐴 𝐵))
23 simpr 484 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
241, 2, 3, 19, 21, 21tgbtwntriv1 26756 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐵 ∈ (𝐵𝐼𝐵))
2523, 24eqeltrd 2839 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵))
261, 2, 3, 10, 11, 19, 20, 12, 21, 21, 22, 25ismir 26924 . . 3 ((𝜑𝐴 = 𝐵) → 𝐵 = (𝑀𝐵))
2726eqcomd 2744 . 2 ((𝜑𝐴 = 𝐵) → (𝑀𝐵) = 𝐵)
2818, 27impbida 797 1 (𝜑 → ((𝑀𝐵) = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700  pInvGcmir 26917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-mir 26918
This theorem is referenced by:  mirne  26932  mircinv  26933  mirln2  26942  miduniq  26950  miduniq2  26952  krippenlem  26955  ragflat2  26968  footexALT  26983  footexlem1  26984  footexlem2  26985  colperpexlem2  26996  colperpexlem3  26997  opphllem6  27017  lmimid  27059  hypcgrlem2  27065
  Copyright terms: Public domain W3C validator