| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirinv | Structured version Visualization version GIF version | ||
| Description: The only invariant point of a point inversion Theorem 7.3 of [Schwabhauser] p. 49, Theorem 7.10 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirinv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mirinv | ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐺 ∈ TarskiG) |
| 6 | mirinv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐵 ∈ 𝑃) |
| 8 | mirval.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ 𝑃) |
| 10 | mirval.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
| 11 | mirval.s | . . . . . 6 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 12 | mirfv.m | . . . . . 6 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 13 | 1, 2, 3, 10, 11, 5, 9, 12, 7 | mirbtwn 28639 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) |
| 14 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → (𝑀‘𝐵) = 𝐵) | |
| 15 | 14 | oveq1d 7369 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → ((𝑀‘𝐵)𝐼𝐵) = (𝐵𝐼𝐵)) |
| 16 | 13, 15 | eleqtrd 2835 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵)) |
| 17 | 1, 2, 3, 5, 7, 9, 16 | axtgbtwnid 28447 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐵 = 𝐴) |
| 18 | 17 | eqcomd 2739 | . 2 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐵) → 𝐴 = 𝐵) |
| 19 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐺 ∈ TarskiG) |
| 20 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝑃) |
| 21 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝑃) |
| 22 | eqidd 2734 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴 − 𝐵) = (𝐴 − 𝐵)) | |
| 23 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
| 24 | 1, 2, 3, 19, 21, 21 | tgbtwntriv1 28472 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 ∈ (𝐵𝐼𝐵)) |
| 25 | 23, 24 | eqeltrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵)) |
| 26 | 1, 2, 3, 10, 11, 19, 20, 12, 21, 21, 22, 25 | ismir 28640 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 = (𝑀‘𝐵)) |
| 27 | 26 | eqcomd 2739 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝑀‘𝐵) = 𝐵) |
| 28 | 18, 27 | impbida 800 | 1 ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 distcds 17174 TarskiGcstrkg 28408 Itvcitv 28414 LineGclng 28415 pInvGcmir 28633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-trkgc 28429 df-trkgb 28430 df-trkgcb 28431 df-trkg 28434 df-mir 28634 |
| This theorem is referenced by: mirne 28648 mircinv 28649 mirln2 28658 miduniq 28666 miduniq2 28668 krippenlem 28671 ragflat2 28684 footexALT 28699 footexlem1 28700 footexlem2 28701 colperpexlem2 28712 colperpexlem3 28713 opphllem6 28733 lmimid 28775 hypcgrlem2 28781 |
| Copyright terms: Public domain | W3C validator |