![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > legbtwn | Structured version Visualization version GIF version |
Description: Deduce betweenness from "less than" relation. Corresponds loosely to Proposition 6.13 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
Ref | Expression |
---|---|
legval.p | β’ π = (BaseβπΊ) |
legval.d | β’ β = (distβπΊ) |
legval.i | β’ πΌ = (ItvβπΊ) |
legval.l | β’ β€ = (β€GβπΊ) |
legval.g | β’ (π β πΊ β TarskiG) |
legid.a | β’ (π β π΄ β π) |
legid.b | β’ (π β π΅ β π) |
legtrd.c | β’ (π β πΆ β π) |
legtrd.d | β’ (π β π· β π) |
legbtwn.1 | β’ (π β (π΄ β (πΆπΌπ΅) β¨ π΅ β (πΆπΌπ΄))) |
legbtwn.2 | β’ (π β (πΆ β π΄) β€ (πΆ β π΅)) |
Ref | Expression |
---|---|
legbtwn | β’ (π β π΄ β (πΆπΌπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . 2 β’ ((π β§ π΄ β (πΆπΌπ΅)) β π΄ β (πΆπΌπ΅)) | |
2 | legval.p | . . . . 5 β’ π = (BaseβπΊ) | |
3 | legval.d | . . . . 5 β’ β = (distβπΊ) | |
4 | legval.i | . . . . 5 β’ πΌ = (ItvβπΊ) | |
5 | legval.g | . . . . . 6 β’ (π β πΊ β TarskiG) | |
6 | 5 | adantr 479 | . . . . 5 β’ ((π β§ π΅ β (πΆπΌπ΄)) β πΊ β TarskiG) |
7 | legid.a | . . . . . 6 β’ (π β π΄ β π) | |
8 | 7 | adantr 479 | . . . . 5 β’ ((π β§ π΅ β (πΆπΌπ΄)) β π΄ β π) |
9 | legid.b | . . . . . 6 β’ (π β π΅ β π) | |
10 | 9 | adantr 479 | . . . . 5 β’ ((π β§ π΅ β (πΆπΌπ΄)) β π΅ β π) |
11 | legtrd.c | . . . . . . 7 β’ (π β πΆ β π) | |
12 | 11 | adantr 479 | . . . . . 6 β’ ((π β§ π΅ β (πΆπΌπ΄)) β πΆ β π) |
13 | simpr 483 | . . . . . . 7 β’ ((π β§ π΅ β (πΆπΌπ΄)) β π΅ β (πΆπΌπ΄)) | |
14 | 2, 3, 4, 6, 12, 10, 8, 13 | tgbtwncom 28006 | . . . . . 6 β’ ((π β§ π΅ β (πΆπΌπ΄)) β π΅ β (π΄πΌπΆ)) |
15 | 2, 3, 4, 6, 10, 12 | tgbtwntriv1 28009 | . . . . . 6 β’ ((π β§ π΅ β (πΆπΌπ΄)) β π΅ β (π΅πΌπΆ)) |
16 | legval.l | . . . . . . . 8 β’ β€ = (β€GβπΊ) | |
17 | legbtwn.2 | . . . . . . . . 9 β’ (π β (πΆ β π΄) β€ (πΆ β π΅)) | |
18 | 17 | adantr 479 | . . . . . . . 8 β’ ((π β§ π΅ β (πΆπΌπ΄)) β (πΆ β π΄) β€ (πΆ β π΅)) |
19 | 2, 3, 4, 16, 6, 12, 10, 8, 13 | btwnleg 28106 | . . . . . . . 8 β’ ((π β§ π΅ β (πΆπΌπ΄)) β (πΆ β π΅) β€ (πΆ β π΄)) |
20 | 2, 3, 4, 16, 6, 12, 8, 12, 10, 18, 19 | legtri3 28108 | . . . . . . 7 β’ ((π β§ π΅ β (πΆπΌπ΄)) β (πΆ β π΄) = (πΆ β π΅)) |
21 | 2, 3, 4, 6, 12, 8, 12, 10, 20 | tgcgrcomlr 27998 | . . . . . 6 β’ ((π β§ π΅ β (πΆπΌπ΄)) β (π΄ β πΆ) = (π΅ β πΆ)) |
22 | eqidd 2731 | . . . . . 6 β’ ((π β§ π΅ β (πΆπΌπ΄)) β (π΅ β πΆ) = (π΅ β πΆ)) | |
23 | 2, 3, 4, 6, 8, 10, 12, 10, 10, 12, 14, 15, 21, 22 | tgcgrsub 28027 | . . . . 5 β’ ((π β§ π΅ β (πΆπΌπ΄)) β (π΄ β π΅) = (π΅ β π΅)) |
24 | 2, 3, 4, 6, 8, 10, 10, 23 | axtgcgrid 27981 | . . . 4 β’ ((π β§ π΅ β (πΆπΌπ΄)) β π΄ = π΅) |
25 | 24, 13 | eqeltrd 2831 | . . 3 β’ ((π β§ π΅ β (πΆπΌπ΄)) β π΄ β (πΆπΌπ΄)) |
26 | 24 | oveq2d 7427 | . . 3 β’ ((π β§ π΅ β (πΆπΌπ΄)) β (πΆπΌπ΄) = (πΆπΌπ΅)) |
27 | 25, 26 | eleqtrd 2833 | . 2 β’ ((π β§ π΅ β (πΆπΌπ΄)) β π΄ β (πΆπΌπ΅)) |
28 | legbtwn.1 | . 2 β’ (π β (π΄ β (πΆπΌπ΅) β¨ π΅ β (πΆπΌπ΄))) | |
29 | 1, 27, 28 | mpjaodan 955 | 1 β’ (π β π΄ β (πΆπΌπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β¨ wo 843 = wceq 1539 β wcel 2104 class class class wbr 5147 βcfv 6542 (class class class)co 7411 Basecbs 17148 distcds 17210 TarskiGcstrkg 27945 Itvcitv 27951 β€Gcleg 28100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-er 8705 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-hash 14295 df-word 14469 df-concat 14525 df-s1 14550 df-s2 14803 df-s3 14804 df-trkgc 27966 df-trkgb 27967 df-trkgcb 27968 df-trkg 27971 df-cgrg 28029 df-leg 28101 |
This theorem is referenced by: tgcgrsub2 28113 krippenlem 28208 |
Copyright terms: Public domain | W3C validator |