Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > legbtwn | Structured version Visualization version GIF version |
Description: Deduce betweenness from "less than" relation. Corresponds loosely to Proposition 6.13 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
Ref | Expression |
---|---|
legval.p | ⊢ 𝑃 = (Base‘𝐺) |
legval.d | ⊢ − = (dist‘𝐺) |
legval.i | ⊢ 𝐼 = (Itv‘𝐺) |
legval.l | ⊢ ≤ = (≤G‘𝐺) |
legval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
legid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
legid.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
legtrd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
legtrd.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
legbtwn.1 | ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) |
legbtwn.2 | ⊢ (𝜑 → (𝐶 − 𝐴) ≤ (𝐶 − 𝐵)) |
Ref | Expression |
---|---|
legbtwn | ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵)) | |
2 | legval.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
3 | legval.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
4 | legval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | legval.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG) |
7 | legid.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | 7 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴 ∈ 𝑃) |
9 | legid.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
10 | 9 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ 𝑃) |
11 | legtrd.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
12 | 11 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶 ∈ 𝑃) |
13 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴)) | |
14 | 2, 3, 4, 6, 12, 10, 8, 13 | tgbtwncom 26958 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶)) |
15 | 2, 3, 4, 6, 10, 12 | tgbtwntriv1 26961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐵𝐼𝐶)) |
16 | legval.l | . . . . . . . 8 ⊢ ≤ = (≤G‘𝐺) | |
17 | legbtwn.2 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶 − 𝐴) ≤ (𝐶 − 𝐵)) | |
18 | 17 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → (𝐶 − 𝐴) ≤ (𝐶 − 𝐵)) |
19 | 2, 3, 4, 16, 6, 12, 10, 8, 13 | btwnleg 27058 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → (𝐶 − 𝐵) ≤ (𝐶 − 𝐴)) |
20 | 2, 3, 4, 16, 6, 12, 8, 12, 10, 18, 19 | legtri3 27060 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → (𝐶 − 𝐴) = (𝐶 − 𝐵)) |
21 | 2, 3, 4, 6, 12, 8, 12, 10, 20 | tgcgrcomlr 26950 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 − 𝐶) = (𝐵 − 𝐶)) |
22 | eqidd 2738 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → (𝐵 − 𝐶) = (𝐵 − 𝐶)) | |
23 | 2, 3, 4, 6, 8, 10, 12, 10, 10, 12, 14, 15, 21, 22 | tgcgrsub 26979 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 − 𝐵) = (𝐵 − 𝐵)) |
24 | 2, 3, 4, 6, 8, 10, 10, 23 | axtgcgrid 26933 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴 = 𝐵) |
25 | 24, 13 | eqeltrd 2838 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴 ∈ (𝐶𝐼𝐴)) |
26 | 24 | oveq2d 7331 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → (𝐶𝐼𝐴) = (𝐶𝐼𝐵)) |
27 | 25, 26 | eleqtrd 2840 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴 ∈ (𝐶𝐼𝐵)) |
28 | legbtwn.1 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) | |
29 | 1, 27, 28 | mpjaodan 956 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 class class class wbr 5087 ‘cfv 6465 (class class class)co 7315 Basecbs 16982 distcds 17041 TarskiGcstrkg 26897 Itvcitv 26903 ≤Gcleg 27052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-oadd 8348 df-er 8546 df-pm 8666 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-dju 9730 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-3 12110 df-n0 12307 df-xnn0 12379 df-z 12393 df-uz 12656 df-fz 13313 df-fzo 13456 df-hash 14118 df-word 14290 df-concat 14346 df-s1 14373 df-s2 14633 df-s3 14634 df-trkgc 26918 df-trkgb 26919 df-trkgcb 26920 df-trkg 26923 df-cgrg 26981 df-leg 27053 |
This theorem is referenced by: tgcgrsub2 27065 krippenlem 27160 |
Copyright terms: Public domain | W3C validator |