MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legbtwn Structured version   Visualization version   GIF version

Theorem legbtwn 26394
Description: Deduce betweenness from "less than" relation. Corresponds loosely to Proposition 6.13 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-Aug-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
legbtwn.1 (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
legbtwn.2 (𝜑 → (𝐶 𝐴) (𝐶 𝐵))
Assertion
Ref Expression
legbtwn (𝜑𝐴 ∈ (𝐶𝐼𝐵))

Proof of Theorem legbtwn
StepHypRef Expression
1 simpr 488 . 2 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵))
2 legval.p . . . . 5 𝑃 = (Base‘𝐺)
3 legval.d . . . . 5 = (dist‘𝐺)
4 legval.i . . . . 5 𝐼 = (Itv‘𝐺)
5 legval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65adantr 484 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG)
7 legid.a . . . . . 6 (𝜑𝐴𝑃)
87adantr 484 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴𝑃)
9 legid.b . . . . . 6 (𝜑𝐵𝑃)
109adantr 484 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵𝑃)
11 legtrd.c . . . . . . 7 (𝜑𝐶𝑃)
1211adantr 484 . . . . . 6 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶𝑃)
13 simpr 488 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴))
142, 3, 4, 6, 12, 10, 8, 13tgbtwncom 26288 . . . . . 6 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶))
152, 3, 4, 6, 10, 12tgbtwntriv1 26291 . . . . . 6 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐵𝐼𝐶))
16 legval.l . . . . . . . 8 = (≤G‘𝐺)
17 legbtwn.2 . . . . . . . . 9 (𝜑 → (𝐶 𝐴) (𝐶 𝐵))
1817adantr 484 . . . . . . . 8 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐶 𝐴) (𝐶 𝐵))
192, 3, 4, 16, 6, 12, 10, 8, 13btwnleg 26388 . . . . . . . 8 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐶 𝐵) (𝐶 𝐴))
202, 3, 4, 16, 6, 12, 8, 12, 10, 18, 19legtri3 26390 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐶 𝐴) = (𝐶 𝐵))
212, 3, 4, 6, 12, 8, 12, 10, 20tgcgrcomlr 26280 . . . . . 6 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 𝐶) = (𝐵 𝐶))
22 eqidd 2825 . . . . . 6 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐵 𝐶) = (𝐵 𝐶))
232, 3, 4, 6, 8, 10, 12, 10, 10, 12, 14, 15, 21, 22tgcgrsub 26309 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 𝐵) = (𝐵 𝐵))
242, 3, 4, 6, 8, 10, 10, 23axtgcgrid 26263 . . . 4 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴 = 𝐵)
2524, 13eqeltrd 2916 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴 ∈ (𝐶𝐼𝐴))
2624oveq2d 7166 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐶𝐼𝐴) = (𝐶𝐼𝐵))
2725, 26eleqtrd 2918 . 2 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴 ∈ (𝐶𝐼𝐵))
28 legbtwn.1 . 2 (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
291, 27, 28mpjaodan 956 1 (𝜑𝐴 ∈ (𝐶𝐼𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2115   class class class wbr 5053  cfv 6344  (class class class)co 7150  Basecbs 16486  distcds 16577  TarskiGcstrkg 26230  Itvcitv 26236  ≤Gcleg 26382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-oadd 8103  df-er 8286  df-pm 8406  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-dju 9328  df-card 9366  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11700  df-3 11701  df-n0 11898  df-xnn0 11968  df-z 11982  df-uz 12244  df-fz 12898  df-fzo 13041  df-hash 13699  df-word 13870  df-concat 13926  df-s1 13953  df-s2 14213  df-s3 14214  df-trkgc 26248  df-trkgb 26249  df-trkgcb 26250  df-trkg 26253  df-cgrg 26311  df-leg 26383
This theorem is referenced by:  tgcgrsub2  26395  krippenlem  26490
  Copyright terms: Public domain W3C validator