MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legbtwn Structured version   Visualization version   GIF version

Theorem legbtwn 26388
Description: Deduce betweenness from "less than" relation. Corresponds loosely to Proposition 6.13 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-Aug-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
legbtwn.1 (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
legbtwn.2 (𝜑 → (𝐶 𝐴) (𝐶 𝐵))
Assertion
Ref Expression
legbtwn (𝜑𝐴 ∈ (𝐶𝐼𝐵))

Proof of Theorem legbtwn
StepHypRef Expression
1 simpr 488 . 2 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵))
2 legval.p . . . . 5 𝑃 = (Base‘𝐺)
3 legval.d . . . . 5 = (dist‘𝐺)
4 legval.i . . . . 5 𝐼 = (Itv‘𝐺)
5 legval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65adantr 484 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG)
7 legid.a . . . . . 6 (𝜑𝐴𝑃)
87adantr 484 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴𝑃)
9 legid.b . . . . . 6 (𝜑𝐵𝑃)
109adantr 484 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵𝑃)
11 legtrd.c . . . . . . 7 (𝜑𝐶𝑃)
1211adantr 484 . . . . . 6 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶𝑃)
13 simpr 488 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴))
142, 3, 4, 6, 12, 10, 8, 13tgbtwncom 26282 . . . . . 6 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶))
152, 3, 4, 6, 10, 12tgbtwntriv1 26285 . . . . . 6 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐵𝐼𝐶))
16 legval.l . . . . . . . 8 = (≤G‘𝐺)
17 legbtwn.2 . . . . . . . . 9 (𝜑 → (𝐶 𝐴) (𝐶 𝐵))
1817adantr 484 . . . . . . . 8 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐶 𝐴) (𝐶 𝐵))
192, 3, 4, 16, 6, 12, 10, 8, 13btwnleg 26382 . . . . . . . 8 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐶 𝐵) (𝐶 𝐴))
202, 3, 4, 16, 6, 12, 8, 12, 10, 18, 19legtri3 26384 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐶 𝐴) = (𝐶 𝐵))
212, 3, 4, 6, 12, 8, 12, 10, 20tgcgrcomlr 26274 . . . . . 6 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 𝐶) = (𝐵 𝐶))
22 eqidd 2799 . . . . . 6 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐵 𝐶) = (𝐵 𝐶))
232, 3, 4, 6, 8, 10, 12, 10, 10, 12, 14, 15, 21, 22tgcgrsub 26303 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 𝐵) = (𝐵 𝐵))
242, 3, 4, 6, 8, 10, 10, 23axtgcgrid 26257 . . . 4 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴 = 𝐵)
2524, 13eqeltrd 2890 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴 ∈ (𝐶𝐼𝐴))
2624oveq2d 7151 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐶𝐼𝐴) = (𝐶𝐼𝐵))
2725, 26eleqtrd 2892 . 2 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴 ∈ (𝐶𝐼𝐵))
28 legbtwn.1 . 2 (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
291, 27, 28mpjaodan 956 1 (𝜑𝐴 ∈ (𝐶𝐼𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  Itvcitv 26230  ≤Gcleg 26376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkg 26247  df-cgrg 26305  df-leg 26377
This theorem is referenced by:  tgcgrsub2  26389  krippenlem  26484
  Copyright terms: Public domain W3C validator