MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnne Structured version   Visualization version   GIF version

Theorem tglnne 28654
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglnne.x (𝜑𝑋𝐵)
tglnne.y (𝜑𝑌𝐵)
tglnne.1 (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿)
Assertion
Ref Expression
tglnne (𝜑𝑋𝑌)

Proof of Theorem tglnne
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . 3 𝐵 = (Base‘𝐺)
2 tglineelsb2.l . . 3 𝐿 = (LineG‘𝐺)
3 tglineelsb2.i . . 3 𝐼 = (Itv‘𝐺)
4 tglineelsb2.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 729 . . 3 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐺 ∈ TarskiG)
6 tglnne.x . . . 4 (𝜑𝑋𝐵)
76ad3antrrr 729 . . 3 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑋𝐵)
8 tglnne.y . . . 4 (𝜑𝑌𝐵)
98ad3antrrr 729 . . 3 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑌𝐵)
10 simpllr 775 . . . . 5 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝐵)
11 simplr 768 . . . . 5 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑦𝐵)
12 simprr 772 . . . . 5 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝑦)
13 eqid 2740 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
141, 13, 3, 5, 10, 11tgbtwntriv1 28517 . . . . 5 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝑥𝐼𝑦))
151, 3, 2, 5, 10, 11, 10, 12, 14btwnlng1 28645 . . . 4 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝑥𝐿𝑦))
16 simprl 770 . . . 4 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → (𝑋𝐿𝑌) = (𝑥𝐿𝑦))
1715, 16eleqtrrd 2847 . . 3 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝑋𝐿𝑌))
181, 2, 3, 5, 7, 9, 17tglngne 28576 . 2 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑋𝑌)
19 tglnne.1 . . 3 (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿)
201, 3, 2, 4, 19tgisline 28653 . 2 (𝜑 → ∃𝑥𝐵𝑦𝐵 ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
2118, 20r19.29vva 3222 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  ran crn 5701  cfv 6573  (class class class)co 7448  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479
This theorem is referenced by:  footne  28749  footeq  28750  hlperpnel  28751  colperp  28755  mideulem2  28760  opphllem  28761  midex  28763  opphllem3  28775  opphllem6  28778  opphl  28780  lmieu  28810  lnperpex  28829  trgcopy  28830
  Copyright terms: Public domain W3C validator