MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnne Structured version   Visualization version   GIF version

Theorem tglnne 28606
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglnne.x (𝜑𝑋𝐵)
tglnne.y (𝜑𝑌𝐵)
tglnne.1 (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿)
Assertion
Ref Expression
tglnne (𝜑𝑋𝑌)

Proof of Theorem tglnne
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . 3 𝐵 = (Base‘𝐺)
2 tglineelsb2.l . . 3 𝐿 = (LineG‘𝐺)
3 tglineelsb2.i . . 3 𝐼 = (Itv‘𝐺)
4 tglineelsb2.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 730 . . 3 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐺 ∈ TarskiG)
6 tglnne.x . . . 4 (𝜑𝑋𝐵)
76ad3antrrr 730 . . 3 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑋𝐵)
8 tglnne.y . . . 4 (𝜑𝑌𝐵)
98ad3antrrr 730 . . 3 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑌𝐵)
10 simpllr 775 . . . . 5 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝐵)
11 simplr 768 . . . . 5 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑦𝐵)
12 simprr 772 . . . . 5 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝑦)
13 eqid 2731 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
141, 13, 3, 5, 10, 11tgbtwntriv1 28469 . . . . 5 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝑥𝐼𝑦))
151, 3, 2, 5, 10, 11, 10, 12, 14btwnlng1 28597 . . . 4 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝑥𝐿𝑦))
16 simprl 770 . . . 4 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → (𝑋𝐿𝑌) = (𝑥𝐿𝑦))
1715, 16eleqtrrd 2834 . . 3 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝑋𝐿𝑌))
181, 2, 3, 5, 7, 9, 17tglngne 28528 . 2 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑋𝑌)
19 tglnne.1 . . 3 (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿)
201, 3, 2, 4, 19tgisline 28605 . 2 (𝜑 → ∃𝑥𝐵𝑦𝐵 ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
2118, 20r19.29vva 3192 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  ran crn 5615  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  TarskiGcstrkg 28405  Itvcitv 28411  LineGclng 28412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-trkgc 28426  df-trkgb 28427  df-trkgcb 28428  df-trkg 28431
This theorem is referenced by:  footne  28701  footeq  28702  hlperpnel  28703  colperp  28707  mideulem2  28712  opphllem  28713  midex  28715  opphllem3  28727  opphllem6  28730  opphl  28732  lmieu  28762  lnperpex  28781  trgcopy  28782
  Copyright terms: Public domain W3C validator