| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglnne | Structured version Visualization version GIF version | ||
| Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
| tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglnne.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| tglnne.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| tglnne.1 | ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
| Ref | Expression |
|---|---|
| tglnne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineelsb2.p | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | tglineelsb2.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 3 | tglineelsb2.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tglineelsb2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | ad3antrrr 730 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
| 6 | tglnne.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | 6 | ad3antrrr 730 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑋 ∈ 𝐵) |
| 8 | tglnne.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 8 | ad3antrrr 730 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑌 ∈ 𝐵) |
| 10 | simpllr 775 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝐵) | |
| 11 | simplr 768 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ 𝐵) | |
| 12 | simprr 772 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | |
| 13 | eqid 2729 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 14 | 1, 13, 3, 5, 10, 11 | tgbtwntriv1 28436 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝑥𝐼𝑦)) |
| 15 | 1, 3, 2, 5, 10, 11, 10, 12, 14 | btwnlng1 28564 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝑥𝐿𝑦)) |
| 16 | simprl 770 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → (𝑋𝐿𝑌) = (𝑥𝐿𝑦)) | |
| 17 | 15, 16 | eleqtrrd 2831 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝑋𝐿𝑌)) |
| 18 | 1, 2, 3, 5, 7, 9, 17 | tglngne 28495 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑋 ≠ 𝑌) |
| 19 | tglnne.1 | . . 3 ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) | |
| 20 | 1, 3, 2, 4, 19 | tgisline 28572 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
| 21 | 18, 20 | r19.29vva 3189 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ran crn 5620 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 distcds 17170 TarskiGcstrkg 28372 Itvcitv 28378 LineGclng 28379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-trkgc 28393 df-trkgb 28394 df-trkgcb 28395 df-trkg 28398 |
| This theorem is referenced by: footne 28668 footeq 28669 hlperpnel 28670 colperp 28674 mideulem2 28679 opphllem 28680 midex 28682 opphllem3 28694 opphllem6 28697 opphl 28699 lmieu 28729 lnperpex 28748 trgcopy 28749 |
| Copyright terms: Public domain | W3C validator |