![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglnne | Structured version Visualization version GIF version |
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglnne.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
tglnne.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
tglnne.1 | ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
Ref | Expression |
---|---|
tglnne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
3 | tglineelsb2.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglineelsb2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad3antrrr 721 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
6 | tglnne.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | 6 | ad3antrrr 721 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑋 ∈ 𝐵) |
8 | tglnne.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 8 | ad3antrrr 721 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑌 ∈ 𝐵) |
10 | simpllr 793 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝐵) | |
11 | simplr 785 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ 𝐵) | |
12 | simprr 789 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | |
13 | eqid 2825 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
14 | 1, 13, 3, 5, 10, 11 | tgbtwntriv1 25803 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝑥𝐼𝑦)) |
15 | 1, 3, 2, 5, 10, 11, 10, 12, 14 | btwnlng1 25931 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝑥𝐿𝑦)) |
16 | simprl 787 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → (𝑋𝐿𝑌) = (𝑥𝐿𝑦)) | |
17 | 15, 16 | eleqtrrd 2909 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝑋𝐿𝑌)) |
18 | 1, 2, 3, 5, 7, 9, 17 | tglngne 25862 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑋 ≠ 𝑌) |
19 | tglnne.1 | . . 3 ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) | |
20 | 1, 3, 2, 4, 19 | tgisline 25939 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
21 | 18, 20 | r19.29vva 3291 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ran crn 5343 ‘cfv 6123 (class class class)co 6905 Basecbs 16222 distcds 16314 TarskiGcstrkg 25742 Itvcitv 25748 LineGclng 25749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-1st 7428 df-2nd 7429 df-trkgc 25760 df-trkgb 25761 df-trkgcb 25762 df-trkg 25765 |
This theorem is referenced by: footne 26032 footeq 26033 hlperpnel 26034 colperp 26038 mideulem2 26043 opphllem 26044 midex 26046 opphllem3 26058 opphllem6 26061 opphl 26063 lmieu 26093 lnperpex 26112 trgcopy 26113 |
Copyright terms: Public domain | W3C validator |