MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnne Structured version   Visualization version   GIF version

Theorem tglnne 28312
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐡 = (Baseβ€˜πΊ)
tglineelsb2.i 𝐼 = (Itvβ€˜πΊ)
tglineelsb2.l 𝐿 = (LineGβ€˜πΊ)
tglineelsb2.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tglnne.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
tglnne.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
tglnne.1 (πœ‘ β†’ (π‘‹πΏπ‘Œ) ∈ ran 𝐿)
Assertion
Ref Expression
tglnne (πœ‘ β†’ 𝑋 β‰  π‘Œ)

Proof of Theorem tglnne
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . 3 𝐡 = (Baseβ€˜πΊ)
2 tglineelsb2.l . . 3 𝐿 = (LineGβ€˜πΊ)
3 tglineelsb2.i . . 3 𝐼 = (Itvβ€˜πΊ)
4 tglineelsb2.g . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54ad3antrrr 727 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ ((π‘‹πΏπ‘Œ) = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ 𝐺 ∈ TarskiG)
6 tglnne.x . . . 4 (πœ‘ β†’ 𝑋 ∈ 𝐡)
76ad3antrrr 727 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ ((π‘‹πΏπ‘Œ) = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ 𝑋 ∈ 𝐡)
8 tglnne.y . . . 4 (πœ‘ β†’ π‘Œ ∈ 𝐡)
98ad3antrrr 727 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ ((π‘‹πΏπ‘Œ) = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ π‘Œ ∈ 𝐡)
10 simpllr 773 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ ((π‘‹πΏπ‘Œ) = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ π‘₯ ∈ 𝐡)
11 simplr 766 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ ((π‘‹πΏπ‘Œ) = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ 𝑦 ∈ 𝐡)
12 simprr 770 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ ((π‘‹πΏπ‘Œ) = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ π‘₯ β‰  𝑦)
13 eqid 2731 . . . . . 6 (distβ€˜πΊ) = (distβ€˜πΊ)
141, 13, 3, 5, 10, 11tgbtwntriv1 28175 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ ((π‘‹πΏπ‘Œ) = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ π‘₯ ∈ (π‘₯𝐼𝑦))
151, 3, 2, 5, 10, 11, 10, 12, 14btwnlng1 28303 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ ((π‘‹πΏπ‘Œ) = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ π‘₯ ∈ (π‘₯𝐿𝑦))
16 simprl 768 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ ((π‘‹πΏπ‘Œ) = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ (π‘‹πΏπ‘Œ) = (π‘₯𝐿𝑦))
1715, 16eleqtrrd 2835 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ ((π‘‹πΏπ‘Œ) = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ π‘₯ ∈ (π‘‹πΏπ‘Œ))
181, 2, 3, 5, 7, 9, 17tglngne 28234 . 2 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ ((π‘‹πΏπ‘Œ) = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ 𝑋 β‰  π‘Œ)
19 tglnne.1 . . 3 (πœ‘ β†’ (π‘‹πΏπ‘Œ) ∈ ran 𝐿)
201, 3, 2, 4, 19tgisline 28311 . 2 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 ((π‘‹πΏπ‘Œ) = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
2118, 20r19.29vva 3212 1 (πœ‘ β†’ 𝑋 β‰  π‘Œ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  ran crn 5677  β€˜cfv 6543  (class class class)co 7412  Basecbs 17151  distcds 17213  TarskiGcstrkg 28111  Itvcitv 28117  LineGclng 28118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-trkgc 28132  df-trkgb 28133  df-trkgcb 28134  df-trkg 28137
This theorem is referenced by:  footne  28407  footeq  28408  hlperpnel  28409  colperp  28413  mideulem2  28418  opphllem  28419  midex  28421  opphllem3  28433  opphllem6  28436  opphl  28438  lmieu  28468  lnperpex  28487  trgcopy  28488
  Copyright terms: Public domain W3C validator