MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnne Structured version   Visualization version   GIF version

Theorem tglnne 25996
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglnne.x (𝜑𝑋𝐵)
tglnne.y (𝜑𝑌𝐵)
tglnne.1 (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿)
Assertion
Ref Expression
tglnne (𝜑𝑋𝑌)

Proof of Theorem tglnne
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . 3 𝐵 = (Base‘𝐺)
2 tglineelsb2.l . . 3 𝐿 = (LineG‘𝐺)
3 tglineelsb2.i . . 3 𝐼 = (Itv‘𝐺)
4 tglineelsb2.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 720 . . 3 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐺 ∈ TarskiG)
6 tglnne.x . . . 4 (𝜑𝑋𝐵)
76ad3antrrr 720 . . 3 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑋𝐵)
8 tglnne.y . . . 4 (𝜑𝑌𝐵)
98ad3antrrr 720 . . 3 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑌𝐵)
10 simpllr 766 . . . . 5 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝐵)
11 simplr 759 . . . . 5 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑦𝐵)
12 simprr 763 . . . . 5 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝑦)
13 eqid 2778 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
141, 13, 3, 5, 10, 11tgbtwntriv1 25859 . . . . 5 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝑥𝐼𝑦))
151, 3, 2, 5, 10, 11, 10, 12, 14btwnlng1 25987 . . . 4 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝑥𝐿𝑦))
16 simprl 761 . . . 4 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → (𝑋𝐿𝑌) = (𝑥𝐿𝑦))
1715, 16eleqtrrd 2862 . . 3 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝑋𝐿𝑌))
181, 2, 3, 5, 7, 9, 17tglngne 25918 . 2 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑋𝑌)
19 tglnne.1 . . 3 (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿)
201, 3, 2, 4, 19tgisline 25995 . 2 (𝜑 → ∃𝑥𝐵𝑦𝐵 ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
2118, 20r19.29vva 3267 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wne 2969  ran crn 5358  cfv 6137  (class class class)co 6924  Basecbs 16266  distcds 16358  TarskiGcstrkg 25798  Itvcitv 25804  LineGclng 25805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-trkgc 25816  df-trkgb 25817  df-trkgcb 25818  df-trkg 25821
This theorem is referenced by:  footne  26088  footeq  26089  hlperpnel  26090  colperp  26094  mideulem2  26099  opphllem  26100  midex  26102  opphllem3  26114  opphllem6  26117  opphl  26119  lmieu  26149  lnperpex  26168  trgcopy  26169
  Copyright terms: Public domain W3C validator