![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglnne | Structured version Visualization version GIF version |
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglnne.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
tglnne.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
tglnne.1 | ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
Ref | Expression |
---|---|
tglnne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
3 | tglineelsb2.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglineelsb2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad3antrrr 728 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
6 | tglnne.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | 6 | ad3antrrr 728 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑋 ∈ 𝐵) |
8 | tglnne.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 8 | ad3antrrr 728 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑌 ∈ 𝐵) |
10 | simpllr 774 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝐵) | |
11 | simplr 767 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ 𝐵) | |
12 | simprr 771 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | |
13 | eqid 2736 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
14 | 1, 13, 3, 5, 10, 11 | tgbtwntriv1 27433 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝑥𝐼𝑦)) |
15 | 1, 3, 2, 5, 10, 11, 10, 12, 14 | btwnlng1 27561 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝑥𝐿𝑦)) |
16 | simprl 769 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → (𝑋𝐿𝑌) = (𝑥𝐿𝑦)) | |
17 | 15, 16 | eleqtrrd 2841 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝑋𝐿𝑌)) |
18 | 1, 2, 3, 5, 7, 9, 17 | tglngne 27492 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑋 ≠ 𝑌) |
19 | tglnne.1 | . . 3 ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) | |
20 | 1, 3, 2, 4, 19 | tgisline 27569 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑋𝐿𝑌) = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
21 | 18, 20 | r19.29vva 3207 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ran crn 5634 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 distcds 17142 TarskiGcstrkg 27369 Itvcitv 27375 LineGclng 27376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-1st 7921 df-2nd 7922 df-trkgc 27390 df-trkgb 27391 df-trkgcb 27392 df-trkg 27395 |
This theorem is referenced by: footne 27665 footeq 27666 hlperpnel 27667 colperp 27671 mideulem2 27676 opphllem 27677 midex 27679 opphllem3 27691 opphllem6 27694 opphl 27696 lmieu 27726 lnperpex 27745 trgcopy 27746 |
Copyright terms: Public domain | W3C validator |