MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinerflx1 Structured version   Visualization version   GIF version

Theorem tglinerflx1 28148
Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐡 = (Baseβ€˜πΊ)
tglineelsb2.i 𝐼 = (Itvβ€˜πΊ)
tglineelsb2.l 𝐿 = (LineGβ€˜πΊ)
tglineelsb2.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tglineelsb2.1 (πœ‘ β†’ 𝑃 ∈ 𝐡)
tglineelsb2.2 (πœ‘ β†’ 𝑄 ∈ 𝐡)
tglineelsb2.4 (πœ‘ β†’ 𝑃 β‰  𝑄)
Assertion
Ref Expression
tglinerflx1 (πœ‘ β†’ 𝑃 ∈ (𝑃𝐿𝑄))

Proof of Theorem tglinerflx1
StepHypRef Expression
1 tglineelsb2.p . 2 𝐡 = (Baseβ€˜πΊ)
2 tglineelsb2.i . 2 𝐼 = (Itvβ€˜πΊ)
3 tglineelsb2.l . 2 𝐿 = (LineGβ€˜πΊ)
4 tglineelsb2.g . 2 (πœ‘ β†’ 𝐺 ∈ TarskiG)
5 tglineelsb2.1 . 2 (πœ‘ β†’ 𝑃 ∈ 𝐡)
6 tglineelsb2.2 . 2 (πœ‘ β†’ 𝑄 ∈ 𝐡)
7 tglineelsb2.4 . 2 (πœ‘ β†’ 𝑃 β‰  𝑄)
8 eqid 2731 . . 3 (distβ€˜πΊ) = (distβ€˜πΊ)
91, 8, 2, 4, 5, 6tgbtwntriv1 28006 . 2 (πœ‘ β†’ 𝑃 ∈ (𝑃𝐼𝑄))
101, 2, 3, 4, 5, 6, 5, 7, 9btwnlng1 28134 1 (πœ‘ β†’ 𝑃 ∈ (𝑃𝐿𝑄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  β€˜cfv 6544  (class class class)co 7412  Basecbs 17149  distcds 17211  TarskiGcstrkg 27942  Itvcitv 27948  LineGclng 27949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-trkgc 27963  df-trkgb 27964  df-trkgcb 27965  df-trkg 27968
This theorem is referenced by:  tghilberti1  28152  tglnne0  28155  tglnpt2  28156  tglineneq  28159  coltr  28162  colline  28164  footexALT  28233  footexlem1  28234  footexlem2  28235  foot  28237  footne  28238  perprag  28241  colperp  28244  colperpexlem3  28247  mideulem2  28249  outpasch  28270  hlpasch  28271  lnopp2hpgb  28278  colopp  28284  lmieu  28299  lmimid  28309  hypcgrlem1  28314  hypcgrlem2  28315  trgcopyeulem  28320  tgasa1  28373
  Copyright terms: Public domain W3C validator