MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinerflx1 Structured version   Visualization version   GIF version

Theorem tglinerflx1 28318
Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tglinerflx1 (𝜑𝑃 ∈ (𝑃𝐿𝑄))

Proof of Theorem tglinerflx1
StepHypRef Expression
1 tglineelsb2.p . 2 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . 2 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . 2 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tglineelsb2.1 . 2 (𝜑𝑃𝐵)
6 tglineelsb2.2 . 2 (𝜑𝑄𝐵)
7 tglineelsb2.4 . 2 (𝜑𝑃𝑄)
8 eqid 2731 . . 3 (dist‘𝐺) = (dist‘𝐺)
91, 8, 2, 4, 5, 6tgbtwntriv1 28176 . 2 (𝜑𝑃 ∈ (𝑃𝐼𝑄))
101, 2, 3, 4, 5, 6, 5, 7, 9btwnlng1 28304 1 (𝜑𝑃 ∈ (𝑃𝐿𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wne 2939  cfv 6543  (class class class)co 7412  Basecbs 17151  distcds 17213  TarskiGcstrkg 28112  Itvcitv 28118  LineGclng 28119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-trkgc 28133  df-trkgb 28134  df-trkgcb 28135  df-trkg 28138
This theorem is referenced by:  tghilberti1  28322  tglnne0  28325  tglnpt2  28326  tglineneq  28329  coltr  28332  colline  28334  footexALT  28403  footexlem1  28404  footexlem2  28405  foot  28407  footne  28408  perprag  28411  colperp  28414  colperpexlem3  28417  mideulem2  28419  outpasch  28440  hlpasch  28441  lnopp2hpgb  28448  colopp  28454  lmieu  28469  lmimid  28479  hypcgrlem1  28484  hypcgrlem2  28485  trgcopyeulem  28490  tgasa1  28543
  Copyright terms: Public domain W3C validator