| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglinerflx1 | Structured version Visualization version GIF version | ||
| Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
| Ref | Expression |
|---|---|
| tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
| tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| Ref | Expression |
|---|---|
| tglinerflx1 | ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐿𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineelsb2.p | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | tglineelsb2.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 3 | tglineelsb2.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglineelsb2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tglineelsb2.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
| 6 | tglineelsb2.2 | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
| 7 | tglineelsb2.4 | . 2 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
| 8 | eqid 2729 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 9 | 1, 8, 2, 4, 5, 6 | tgbtwntriv1 28472 | . 2 ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐼𝑄)) |
| 10 | 1, 2, 3, 4, 5, 6, 5, 7, 9 | btwnlng1 28600 | 1 ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐿𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6499 (class class class)co 7369 Basecbs 17156 distcds 17206 TarskiGcstrkg 28408 Itvcitv 28414 LineGclng 28415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-trkgc 28429 df-trkgb 28430 df-trkgcb 28431 df-trkg 28434 |
| This theorem is referenced by: tghilberti1 28618 tglnne0 28621 tglnpt2 28622 tglineneq 28625 coltr 28628 colline 28630 footexALT 28699 footexlem1 28700 footexlem2 28701 foot 28703 footne 28704 perprag 28707 colperp 28710 colperpexlem3 28713 mideulem2 28715 outpasch 28736 hlpasch 28737 lnopp2hpgb 28744 colopp 28750 lmieu 28765 lmimid 28775 hypcgrlem1 28780 hypcgrlem2 28781 trgcopyeulem 28786 tgasa1 28839 |
| Copyright terms: Public domain | W3C validator |