| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglinerflx1 | Structured version Visualization version GIF version | ||
| Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
| Ref | Expression |
|---|---|
| tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
| tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| Ref | Expression |
|---|---|
| tglinerflx1 | ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐿𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineelsb2.p | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | tglineelsb2.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 3 | tglineelsb2.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglineelsb2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tglineelsb2.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
| 6 | tglineelsb2.2 | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
| 7 | tglineelsb2.4 | . 2 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
| 8 | eqid 2729 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 9 | 1, 8, 2, 4, 5, 6 | tgbtwntriv1 28418 | . 2 ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐼𝑄)) |
| 10 | 1, 2, 3, 4, 5, 6, 5, 7, 9 | btwnlng1 28546 | 1 ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐿𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 distcds 17229 TarskiGcstrkg 28354 Itvcitv 28360 LineGclng 28361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-trkgc 28375 df-trkgb 28376 df-trkgcb 28377 df-trkg 28380 |
| This theorem is referenced by: tghilberti1 28564 tglnne0 28567 tglnpt2 28568 tglineneq 28571 coltr 28574 colline 28576 footexALT 28645 footexlem1 28646 footexlem2 28647 foot 28649 footne 28650 perprag 28653 colperp 28656 colperpexlem3 28659 mideulem2 28661 outpasch 28682 hlpasch 28683 lnopp2hpgb 28690 colopp 28696 lmieu 28711 lmimid 28721 hypcgrlem1 28726 hypcgrlem2 28727 trgcopyeulem 28732 tgasa1 28785 |
| Copyright terms: Public domain | W3C validator |