MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinerflx1 Structured version   Visualization version   GIF version

Theorem tglinerflx1 27922
Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐡 = (Baseβ€˜πΊ)
tglineelsb2.i 𝐼 = (Itvβ€˜πΊ)
tglineelsb2.l 𝐿 = (LineGβ€˜πΊ)
tglineelsb2.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tglineelsb2.1 (πœ‘ β†’ 𝑃 ∈ 𝐡)
tglineelsb2.2 (πœ‘ β†’ 𝑄 ∈ 𝐡)
tglineelsb2.4 (πœ‘ β†’ 𝑃 β‰  𝑄)
Assertion
Ref Expression
tglinerflx1 (πœ‘ β†’ 𝑃 ∈ (𝑃𝐿𝑄))

Proof of Theorem tglinerflx1
StepHypRef Expression
1 tglineelsb2.p . 2 𝐡 = (Baseβ€˜πΊ)
2 tglineelsb2.i . 2 𝐼 = (Itvβ€˜πΊ)
3 tglineelsb2.l . 2 𝐿 = (LineGβ€˜πΊ)
4 tglineelsb2.g . 2 (πœ‘ β†’ 𝐺 ∈ TarskiG)
5 tglineelsb2.1 . 2 (πœ‘ β†’ 𝑃 ∈ 𝐡)
6 tglineelsb2.2 . 2 (πœ‘ β†’ 𝑄 ∈ 𝐡)
7 tglineelsb2.4 . 2 (πœ‘ β†’ 𝑃 β‰  𝑄)
8 eqid 2732 . . 3 (distβ€˜πΊ) = (distβ€˜πΊ)
91, 8, 2, 4, 5, 6tgbtwntriv1 27780 . 2 (πœ‘ β†’ 𝑃 ∈ (𝑃𝐼𝑄))
101, 2, 3, 4, 5, 6, 5, 7, 9btwnlng1 27908 1 (πœ‘ β†’ 𝑃 ∈ (𝑃𝐿𝑄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  β€˜cfv 6543  (class class class)co 7411  Basecbs 17146  distcds 17208  TarskiGcstrkg 27716  Itvcitv 27722  LineGclng 27723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-trkgc 27737  df-trkgb 27738  df-trkgcb 27739  df-trkg 27742
This theorem is referenced by:  tghilberti1  27926  tglnne0  27929  tglnpt2  27930  tglineneq  27933  coltr  27936  colline  27938  footexALT  28007  footexlem1  28008  footexlem2  28009  foot  28011  footne  28012  perprag  28015  colperp  28018  colperpexlem3  28021  mideulem2  28023  outpasch  28044  hlpasch  28045  lnopp2hpgb  28052  colopp  28058  lmieu  28073  lmimid  28083  hypcgrlem1  28088  hypcgrlem2  28089  trgcopyeulem  28094  tgasa1  28147
  Copyright terms: Public domain W3C validator