| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglinerflx1 | Structured version Visualization version GIF version | ||
| Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
| Ref | Expression |
|---|---|
| tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
| tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| Ref | Expression |
|---|---|
| tglinerflx1 | ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐿𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineelsb2.p | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | tglineelsb2.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 3 | tglineelsb2.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglineelsb2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tglineelsb2.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
| 6 | tglineelsb2.2 | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
| 7 | tglineelsb2.4 | . 2 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
| 8 | eqid 2730 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 9 | 1, 8, 2, 4, 5, 6 | tgbtwntriv1 28425 | . 2 ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐼𝑄)) |
| 10 | 1, 2, 3, 4, 5, 6, 5, 7, 9 | btwnlng1 28553 | 1 ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐿𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 distcds 17236 TarskiGcstrkg 28361 Itvcitv 28367 LineGclng 28368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-trkgc 28382 df-trkgb 28383 df-trkgcb 28384 df-trkg 28387 |
| This theorem is referenced by: tghilberti1 28571 tglnne0 28574 tglnpt2 28575 tglineneq 28578 coltr 28581 colline 28583 footexALT 28652 footexlem1 28653 footexlem2 28654 foot 28656 footne 28657 perprag 28660 colperp 28663 colperpexlem3 28666 mideulem2 28668 outpasch 28689 hlpasch 28690 lnopp2hpgb 28697 colopp 28703 lmieu 28718 lmimid 28728 hypcgrlem1 28733 hypcgrlem2 28734 trgcopyeulem 28739 tgasa1 28792 |
| Copyright terms: Public domain | W3C validator |