MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncolne1 Structured version   Visualization version   GIF version

Theorem ncolne1 26967
Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
ncolne.x (𝜑𝑋𝐵)
ncolne.y (𝜑𝑌𝐵)
ncolne.z (𝜑𝑍𝐵)
ncolne.2 (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
Assertion
Ref Expression
ncolne1 (𝜑𝑋𝑌)

Proof of Theorem ncolne1
StepHypRef Expression
1 ncolne.2 . . 3 (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
2 tglineelsb2.p . . . 4 𝐵 = (Base‘𝐺)
3 tglineelsb2.l . . . 4 𝐿 = (LineG‘𝐺)
4 tglineelsb2.i . . . 4 𝐼 = (Itv‘𝐺)
5 tglineelsb2.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
65adantr 480 . . . 4 ((𝜑𝑋 = 𝑌) → 𝐺 ∈ TarskiG)
7 ncolne.y . . . . 5 (𝜑𝑌𝐵)
87adantr 480 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑌𝐵)
9 ncolne.z . . . . 5 (𝜑𝑍𝐵)
109adantr 480 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑍𝐵)
11 ncolne.x . . . . 5 (𝜑𝑋𝐵)
1211adantr 480 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑋𝐵)
13 eqid 2739 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
142, 13, 4, 6, 12, 10tgbtwntriv1 26833 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (𝑋𝐼𝑍))
15 simpr 484 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
1615oveq1d 7283 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝑋𝐼𝑍) = (𝑌𝐼𝑍))
1714, 16eleqtrd 2842 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (𝑌𝐼𝑍))
182, 3, 4, 6, 8, 10, 12, 17btwncolg1 26897 . . 3 ((𝜑𝑋 = 𝑌) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
191, 18mtand 812 . 2 (𝜑 → ¬ 𝑋 = 𝑌)
2019neqned 2951 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1541  wcel 2109  wne 2944  cfv 6430  (class class class)co 7268  Basecbs 16893  distcds 16952  TarskiGcstrkg 26769  Itvcitv 26775  LineGclng 26776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-trkgc 26790  df-trkgb 26791  df-trkgcb 26792  df-trkg 26795
This theorem is referenced by:  ncolne2  26968  tglineneq  26986  midexlem  27034  mideulem2  27076  outpasch  27097  hlpasch  27098  trgcopy  27146  trgcopyeulem  27147  acopy  27175  acopyeu  27176  cgrg3col4  27195  tgasa1  27200
  Copyright terms: Public domain W3C validator