Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ncolne1 | Structured version Visualization version GIF version |
Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ncolne.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ncolne.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ncolne.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
ncolne.2 | ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
Ref | Expression |
---|---|
ncolne1 | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncolne.2 | . . 3 ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) | |
2 | tglineelsb2.p | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | tglineelsb2.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tglineelsb2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐺 ∈ TarskiG) |
7 | ncolne.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑌 ∈ 𝐵) |
9 | ncolne.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ 𝐵) |
11 | ncolne.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ 𝐵) |
13 | eqid 2739 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
14 | 2, 13, 4, 6, 12, 10 | tgbtwntriv1 26833 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝑋𝐼𝑍)) |
15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
16 | 15 | oveq1d 7283 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋𝐼𝑍) = (𝑌𝐼𝑍)) |
17 | 14, 16 | eleqtrd 2842 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝑌𝐼𝑍)) |
18 | 2, 3, 4, 6, 8, 10, 12, 17 | btwncolg1 26897 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
19 | 1, 18 | mtand 812 | . 2 ⊢ (𝜑 → ¬ 𝑋 = 𝑌) |
20 | 19 | neqned 2951 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 distcds 16952 TarskiGcstrkg 26769 Itvcitv 26775 LineGclng 26776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-trkgc 26790 df-trkgb 26791 df-trkgcb 26792 df-trkg 26795 |
This theorem is referenced by: ncolne2 26968 tglineneq 26986 midexlem 27034 mideulem2 27076 outpasch 27097 hlpasch 27098 trgcopy 27146 trgcopyeulem 27147 acopy 27175 acopyeu 27176 cgrg3col4 27195 tgasa1 27200 |
Copyright terms: Public domain | W3C validator |