![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncolne1 | Structured version Visualization version GIF version |
Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | β’ π΅ = (BaseβπΊ) |
tglineelsb2.i | β’ πΌ = (ItvβπΊ) |
tglineelsb2.l | β’ πΏ = (LineGβπΊ) |
tglineelsb2.g | β’ (π β πΊ β TarskiG) |
ncolne.x | β’ (π β π β π΅) |
ncolne.y | β’ (π β π β π΅) |
ncolne.z | β’ (π β π β π΅) |
ncolne.2 | β’ (π β Β¬ (π β (ππΏπ) β¨ π = π)) |
Ref | Expression |
---|---|
ncolne1 | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncolne.2 | . . 3 β’ (π β Β¬ (π β (ππΏπ) β¨ π = π)) | |
2 | tglineelsb2.p | . . . 4 β’ π΅ = (BaseβπΊ) | |
3 | tglineelsb2.l | . . . 4 β’ πΏ = (LineGβπΊ) | |
4 | tglineelsb2.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
5 | tglineelsb2.g | . . . . 5 β’ (π β πΊ β TarskiG) | |
6 | 5 | adantr 481 | . . . 4 β’ ((π β§ π = π) β πΊ β TarskiG) |
7 | ncolne.y | . . . . 5 β’ (π β π β π΅) | |
8 | 7 | adantr 481 | . . . 4 β’ ((π β§ π = π) β π β π΅) |
9 | ncolne.z | . . . . 5 β’ (π β π β π΅) | |
10 | 9 | adantr 481 | . . . 4 β’ ((π β§ π = π) β π β π΅) |
11 | ncolne.x | . . . . 5 β’ (π β π β π΅) | |
12 | 11 | adantr 481 | . . . 4 β’ ((π β§ π = π) β π β π΅) |
13 | eqid 2732 | . . . . . 6 β’ (distβπΊ) = (distβπΊ) | |
14 | 2, 13, 4, 6, 12, 10 | tgbtwntriv1 27780 | . . . . 5 β’ ((π β§ π = π) β π β (ππΌπ)) |
15 | simpr 485 | . . . . . 6 β’ ((π β§ π = π) β π = π) | |
16 | 15 | oveq1d 7426 | . . . . 5 β’ ((π β§ π = π) β (ππΌπ) = (ππΌπ)) |
17 | 14, 16 | eleqtrd 2835 | . . . 4 β’ ((π β§ π = π) β π β (ππΌπ)) |
18 | 2, 3, 4, 6, 8, 10, 12, 17 | btwncolg1 27844 | . . 3 β’ ((π β§ π = π) β (π β (ππΏπ) β¨ π = π)) |
19 | 1, 18 | mtand 814 | . 2 β’ (π β Β¬ π = π) |
20 | 19 | neqned 2947 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β¨ wo 845 = wceq 1541 β wcel 2106 β wne 2940 βcfv 6543 (class class class)co 7411 Basecbs 17146 distcds 17208 TarskiGcstrkg 27716 Itvcitv 27722 LineGclng 27723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-trkgc 27737 df-trkgb 27738 df-trkgcb 27739 df-trkg 27742 |
This theorem is referenced by: ncolne2 27915 tglineneq 27933 midexlem 27981 mideulem2 28023 outpasch 28044 hlpasch 28045 trgcopy 28093 trgcopyeulem 28094 acopy 28122 acopyeu 28123 cgrg3col4 28142 tgasa1 28147 |
Copyright terms: Public domain | W3C validator |