MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncolne1 Structured version   Visualization version   GIF version

Theorem ncolne1 26974
Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
ncolne.x (𝜑𝑋𝐵)
ncolne.y (𝜑𝑌𝐵)
ncolne.z (𝜑𝑍𝐵)
ncolne.2 (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
Assertion
Ref Expression
ncolne1 (𝜑𝑋𝑌)

Proof of Theorem ncolne1
StepHypRef Expression
1 ncolne.2 . . 3 (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
2 tglineelsb2.p . . . 4 𝐵 = (Base‘𝐺)
3 tglineelsb2.l . . . 4 𝐿 = (LineG‘𝐺)
4 tglineelsb2.i . . . 4 𝐼 = (Itv‘𝐺)
5 tglineelsb2.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
65adantr 481 . . . 4 ((𝜑𝑋 = 𝑌) → 𝐺 ∈ TarskiG)
7 ncolne.y . . . . 5 (𝜑𝑌𝐵)
87adantr 481 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑌𝐵)
9 ncolne.z . . . . 5 (𝜑𝑍𝐵)
109adantr 481 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑍𝐵)
11 ncolne.x . . . . 5 (𝜑𝑋𝐵)
1211adantr 481 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑋𝐵)
13 eqid 2738 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
142, 13, 4, 6, 12, 10tgbtwntriv1 26840 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (𝑋𝐼𝑍))
15 simpr 485 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
1615oveq1d 7283 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝑋𝐼𝑍) = (𝑌𝐼𝑍))
1714, 16eleqtrd 2841 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (𝑌𝐼𝑍))
182, 3, 4, 6, 8, 10, 12, 17btwncolg1 26904 . . 3 ((𝜑𝑋 = 𝑌) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
191, 18mtand 813 . 2 (𝜑 → ¬ 𝑋 = 𝑌)
2019neqned 2950 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  cfv 6427  (class class class)co 7268  Basecbs 16900  distcds 16959  TarskiGcstrkg 26776  Itvcitv 26782  LineGclng 26783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pr 5351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-opab 5137  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-iota 6385  df-fun 6429  df-fv 6435  df-ov 7271  df-oprab 7272  df-mpo 7273  df-trkgc 26797  df-trkgb 26798  df-trkgcb 26799  df-trkg 26802
This theorem is referenced by:  ncolne2  26975  tglineneq  26993  midexlem  27041  mideulem2  27083  outpasch  27104  hlpasch  27105  trgcopy  27153  trgcopyeulem  27154  acopy  27182  acopyeu  27183  cgrg3col4  27202  tgasa1  27207
  Copyright terms: Public domain W3C validator