| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ncolne1 | Structured version Visualization version GIF version | ||
| Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) |
| Ref | Expression |
|---|---|
| tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
| tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| ncolne.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ncolne.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ncolne.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| ncolne.2 | ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
| Ref | Expression |
|---|---|
| ncolne1 | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ncolne.2 | . . 3 ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) | |
| 2 | tglineelsb2.p | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | tglineelsb2.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglineelsb2.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | tglineelsb2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐺 ∈ TarskiG) |
| 7 | ncolne.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑌 ∈ 𝐵) |
| 9 | ncolne.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ 𝐵) |
| 11 | ncolne.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ 𝐵) |
| 13 | eqid 2730 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 14 | 2, 13, 4, 6, 12, 10 | tgbtwntriv1 28425 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝑋𝐼𝑍)) |
| 15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 16 | 15 | oveq1d 7405 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋𝐼𝑍) = (𝑌𝐼𝑍)) |
| 17 | 14, 16 | eleqtrd 2831 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝑌𝐼𝑍)) |
| 18 | 2, 3, 4, 6, 8, 10, 12, 17 | btwncolg1 28489 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
| 19 | 1, 18 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝑋 = 𝑌) |
| 20 | 19 | neqned 2933 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 distcds 17236 TarskiGcstrkg 28361 Itvcitv 28367 LineGclng 28368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-trkgc 28382 df-trkgb 28383 df-trkgcb 28384 df-trkg 28387 |
| This theorem is referenced by: ncolne2 28560 tglineneq 28578 midexlem 28626 mideulem2 28668 outpasch 28689 hlpasch 28690 trgcopy 28738 trgcopyeulem 28739 acopy 28767 acopyeu 28768 cgrg3col4 28787 tgasa1 28792 |
| Copyright terms: Public domain | W3C validator |