![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncolne1 | Structured version Visualization version GIF version |
Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ncolne.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ncolne.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ncolne.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
ncolne.2 | ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
Ref | Expression |
---|---|
ncolne1 | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncolne.2 | . . 3 ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) | |
2 | tglineelsb2.p | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | tglineelsb2.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tglineelsb2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐺 ∈ TarskiG) |
7 | ncolne.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑌 ∈ 𝐵) |
9 | ncolne.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ 𝐵) |
11 | ncolne.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ 𝐵) |
13 | eqid 2740 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
14 | 2, 13, 4, 6, 12, 10 | tgbtwntriv1 28517 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝑋𝐼𝑍)) |
15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
16 | 15 | oveq1d 7463 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋𝐼𝑍) = (𝑌𝐼𝑍)) |
17 | 14, 16 | eleqtrd 2846 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝑌𝐼𝑍)) |
18 | 2, 3, 4, 6, 8, 10, 12, 17 | btwncolg1 28581 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
19 | 1, 18 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝑋 = 𝑌) |
20 | 19 | neqned 2953 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 distcds 17320 TarskiGcstrkg 28453 Itvcitv 28459 LineGclng 28460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-trkgc 28474 df-trkgb 28475 df-trkgcb 28476 df-trkg 28479 |
This theorem is referenced by: ncolne2 28652 tglineneq 28670 midexlem 28718 mideulem2 28760 outpasch 28781 hlpasch 28782 trgcopy 28830 trgcopyeulem 28831 acopy 28859 acopyeu 28860 cgrg3col4 28879 tgasa1 28884 |
Copyright terms: Public domain | W3C validator |