MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperpex Structured version   Visualization version   GIF version

Theorem colperpex 26998
Description: In dimension 2 and above, on a line (𝐴𝐿𝐵) there is always a perpendicular 𝑃 from 𝐴 on a given plane (here given by 𝐶, in case 𝐶 does not lie on the line). Theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
colperpex.1 (𝜑𝐴𝑃)
colperpex.2 (𝜑𝐵𝑃)
colperpex.3 (𝜑𝐶𝑃)
colperpex.4 (𝜑𝐴𝐵)
colperpex.5 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
colperpex (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
Distinct variable groups:   ,𝑝,𝑡   𝐴,𝑝,𝑡   𝐵,𝑝,𝑡   𝐶,𝑝,𝑡   𝐺,𝑝,𝑡   𝐼,𝑝,𝑡   𝐿,𝑝,𝑡   𝑃,𝑝,𝑡   𝜑,𝑝,𝑡

Proof of Theorem colperpex
Dummy variables 𝑠 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 colperpex.p . . . . 5 𝑃 = (Base‘𝐺)
2 colperpex.d . . . . 5 = (dist‘𝐺)
3 colperpex.i . . . . 5 𝐼 = (Itv‘𝐺)
4 colperpex.l . . . . 5 𝐿 = (LineG‘𝐺)
5 colperpex.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65ad3antrrr 726 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
7 colperpex.1 . . . . . 6 (𝜑𝐴𝑃)
87ad3antrrr 726 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
9 colperpex.2 . . . . . 6 (𝜑𝐵𝑃)
109ad3antrrr 726 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
11 simplr 765 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝑑𝑃)
12 colperpex.4 . . . . . 6 (𝜑𝐴𝐵)
1312ad3antrrr 726 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
14 simpr 484 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ¬ 𝑑 ∈ (𝐴𝐿𝐵))
151, 2, 3, 4, 6, 8, 10, 11, 13, 14colperpexlem3 26997 . . . 4 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))))
16 simprl 767 . . . . . . 7 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
17 colperpex.3 . . . . . . . . 9 (𝜑𝐶𝑃)
1817ad5antr 730 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶𝑃)
19 simp-5r 782 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶 ∈ (𝐴𝐿𝐵))
2019orcd 869 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
215ad5antr 730 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐺 ∈ TarskiG)
22 simplr 765 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝑝𝑃)
231, 2, 3, 21, 18, 22tgbtwntriv1 26756 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶 ∈ (𝐶𝐼𝑝))
24 eleq1 2826 . . . . . . . . . . 11 (𝑡 = 𝐶 → (𝑡 ∈ (𝐴𝐿𝐵) ↔ 𝐶 ∈ (𝐴𝐿𝐵)))
2524orbi1d 913 . . . . . . . . . 10 (𝑡 = 𝐶 → ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ↔ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)))
26 eleq1 2826 . . . . . . . . . 10 (𝑡 = 𝐶 → (𝑡 ∈ (𝐶𝐼𝑝) ↔ 𝐶 ∈ (𝐶𝐼𝑝)))
2725, 26anbi12d 630 . . . . . . . . 9 (𝑡 = 𝐶 → (((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)) ↔ ((𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝐶 ∈ (𝐶𝐼𝑝))))
2827rspcev 3552 . . . . . . . 8 ((𝐶𝑃 ∧ ((𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝐶 ∈ (𝐶𝐼𝑝))) → ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))
2918, 20, 23, 28syl12anc 833 . . . . . . 7 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))
3016, 29jca 511 . . . . . 6 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
3130ex 412 . . . . 5 (((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) → (((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))))
3231reximdva 3202 . . . 4 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → (∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))))
3315, 32mpd 15 . . 3 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
345adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
35 colperpex.5 . . . . 5 (𝜑𝐺DimTarskiG≥2)
3635adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺DimTarskiG≥2)
377adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
389adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
3912adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
401, 3, 4, 34, 36, 37, 38, 39tglowdim2ln 26916 . . 3 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑑𝑃 ¬ 𝑑 ∈ (𝐴𝐿𝐵))
4133, 40r19.29a 3217 . 2 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
425adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
437adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
449adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
4517adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐶𝑃)
4612adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
47 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
481, 2, 3, 4, 42, 43, 44, 45, 46, 47colperpexlem3 26997 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
4941, 48pm2.61dan 809 1 (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  2c2 11958  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  DimTarskiGcstrkgld 26697  Itvcitv 26699  LineGclng 26700  ⟂Gcperpg 26960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkgld 26717  df-trkg 26718  df-cgrg 26776  df-leg 26848  df-mir 26918  df-rag 26959  df-perpg 26961
This theorem is referenced by:  midex  27002  oppperpex  27018
  Copyright terms: Public domain W3C validator