MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperpex Structured version   Visualization version   GIF version

Theorem colperpex 27675
Description: In dimension 2 and above, on a line (𝐴𝐿𝐵) there is always a perpendicular 𝑃 from 𝐴 on a given plane (here given by 𝐶, in case 𝐶 does not lie on the line). Theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
colperpex.1 (𝜑𝐴𝑃)
colperpex.2 (𝜑𝐵𝑃)
colperpex.3 (𝜑𝐶𝑃)
colperpex.4 (𝜑𝐴𝐵)
colperpex.5 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
colperpex (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
Distinct variable groups:   ,𝑝,𝑡   𝐴,𝑝,𝑡   𝐵,𝑝,𝑡   𝐶,𝑝,𝑡   𝐺,𝑝,𝑡   𝐼,𝑝,𝑡   𝐿,𝑝,𝑡   𝑃,𝑝,𝑡   𝜑,𝑝,𝑡

Proof of Theorem colperpex
Dummy variables 𝑠 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 colperpex.p . . . . 5 𝑃 = (Base‘𝐺)
2 colperpex.d . . . . 5 = (dist‘𝐺)
3 colperpex.i . . . . 5 𝐼 = (Itv‘𝐺)
4 colperpex.l . . . . 5 𝐿 = (LineG‘𝐺)
5 colperpex.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65ad3antrrr 728 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
7 colperpex.1 . . . . . 6 (𝜑𝐴𝑃)
87ad3antrrr 728 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
9 colperpex.2 . . . . . 6 (𝜑𝐵𝑃)
109ad3antrrr 728 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
11 simplr 767 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝑑𝑃)
12 colperpex.4 . . . . . 6 (𝜑𝐴𝐵)
1312ad3antrrr 728 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
14 simpr 485 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ¬ 𝑑 ∈ (𝐴𝐿𝐵))
151, 2, 3, 4, 6, 8, 10, 11, 13, 14colperpexlem3 27674 . . . 4 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))))
16 simprl 769 . . . . . . 7 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
17 colperpex.3 . . . . . . . . 9 (𝜑𝐶𝑃)
1817ad5antr 732 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶𝑃)
19 simp-5r 784 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶 ∈ (𝐴𝐿𝐵))
2019orcd 871 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
215ad5antr 732 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐺 ∈ TarskiG)
22 simplr 767 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝑝𝑃)
231, 2, 3, 21, 18, 22tgbtwntriv1 27433 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶 ∈ (𝐶𝐼𝑝))
24 eleq1 2825 . . . . . . . . . . 11 (𝑡 = 𝐶 → (𝑡 ∈ (𝐴𝐿𝐵) ↔ 𝐶 ∈ (𝐴𝐿𝐵)))
2524orbi1d 915 . . . . . . . . . 10 (𝑡 = 𝐶 → ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ↔ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)))
26 eleq1 2825 . . . . . . . . . 10 (𝑡 = 𝐶 → (𝑡 ∈ (𝐶𝐼𝑝) ↔ 𝐶 ∈ (𝐶𝐼𝑝)))
2725, 26anbi12d 631 . . . . . . . . 9 (𝑡 = 𝐶 → (((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)) ↔ ((𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝐶 ∈ (𝐶𝐼𝑝))))
2827rspcev 3581 . . . . . . . 8 ((𝐶𝑃 ∧ ((𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝐶 ∈ (𝐶𝐼𝑝))) → ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))
2918, 20, 23, 28syl12anc 835 . . . . . . 7 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))
3016, 29jca 512 . . . . . 6 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
3130ex 413 . . . . 5 (((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) → (((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))))
3231reximdva 3165 . . . 4 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → (∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))))
3315, 32mpd 15 . . 3 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
345adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
35 colperpex.5 . . . . 5 (𝜑𝐺DimTarskiG≥2)
3635adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺DimTarskiG≥2)
377adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
389adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
3912adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
401, 3, 4, 34, 36, 37, 38, 39tglowdim2ln 27593 . . 3 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑑𝑃 ¬ 𝑑 ∈ (𝐴𝐿𝐵))
4133, 40r19.29a 3159 . 2 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
425adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
437adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
449adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
4517adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐶𝑃)
4612adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
47 simpr 485 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
481, 2, 3, 4, 42, 43, 44, 45, 46, 47colperpexlem3 27674 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
4941, 48pm2.61dan 811 1 (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  2c2 12208  Basecbs 17083  distcds 17142  TarskiGcstrkg 27369  DimTarskiGcstrkgld 27373  Itvcitv 27375  LineGclng 27376  ⟂Gcperpg 27637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-trkgc 27390  df-trkgb 27391  df-trkgcb 27392  df-trkgld 27394  df-trkg 27395  df-cgrg 27453  df-leg 27525  df-mir 27595  df-rag 27636  df-perpg 27638
This theorem is referenced by:  midex  27679  oppperpex  27695
  Copyright terms: Public domain W3C validator