MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperpex Structured version   Visualization version   GIF version

Theorem colperpex 28761
Description: In dimension 2 and above, on a line (𝐴𝐿𝐵) there is always a perpendicular 𝑃 from 𝐴 on a given plane (here given by 𝐶, in case 𝐶 does not lie on the line). Theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
colperpex.1 (𝜑𝐴𝑃)
colperpex.2 (𝜑𝐵𝑃)
colperpex.3 (𝜑𝐶𝑃)
colperpex.4 (𝜑𝐴𝐵)
colperpex.5 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
colperpex (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
Distinct variable groups:   ,𝑝,𝑡   𝐴,𝑝,𝑡   𝐵,𝑝,𝑡   𝐶,𝑝,𝑡   𝐺,𝑝,𝑡   𝐼,𝑝,𝑡   𝐿,𝑝,𝑡   𝑃,𝑝,𝑡   𝜑,𝑝,𝑡

Proof of Theorem colperpex
Dummy variables 𝑠 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 colperpex.p . . . . 5 𝑃 = (Base‘𝐺)
2 colperpex.d . . . . 5 = (dist‘𝐺)
3 colperpex.i . . . . 5 𝐼 = (Itv‘𝐺)
4 colperpex.l . . . . 5 𝐿 = (LineG‘𝐺)
5 colperpex.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65ad3antrrr 729 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
7 colperpex.1 . . . . . 6 (𝜑𝐴𝑃)
87ad3antrrr 729 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
9 colperpex.2 . . . . . 6 (𝜑𝐵𝑃)
109ad3antrrr 729 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
11 simplr 768 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝑑𝑃)
12 colperpex.4 . . . . . 6 (𝜑𝐴𝐵)
1312ad3antrrr 729 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
14 simpr 484 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ¬ 𝑑 ∈ (𝐴𝐿𝐵))
151, 2, 3, 4, 6, 8, 10, 11, 13, 14colperpexlem3 28760 . . . 4 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))))
16 simprl 770 . . . . . . 7 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
17 colperpex.3 . . . . . . . . 9 (𝜑𝐶𝑃)
1817ad5antr 733 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶𝑃)
19 simp-5r 785 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶 ∈ (𝐴𝐿𝐵))
2019orcd 872 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
215ad5antr 733 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐺 ∈ TarskiG)
22 simplr 768 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝑝𝑃)
231, 2, 3, 21, 18, 22tgbtwntriv1 28519 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶 ∈ (𝐶𝐼𝑝))
24 eleq1 2832 . . . . . . . . . . 11 (𝑡 = 𝐶 → (𝑡 ∈ (𝐴𝐿𝐵) ↔ 𝐶 ∈ (𝐴𝐿𝐵)))
2524orbi1d 915 . . . . . . . . . 10 (𝑡 = 𝐶 → ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ↔ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)))
26 eleq1 2832 . . . . . . . . . 10 (𝑡 = 𝐶 → (𝑡 ∈ (𝐶𝐼𝑝) ↔ 𝐶 ∈ (𝐶𝐼𝑝)))
2725, 26anbi12d 631 . . . . . . . . 9 (𝑡 = 𝐶 → (((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)) ↔ ((𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝐶 ∈ (𝐶𝐼𝑝))))
2827rspcev 3635 . . . . . . . 8 ((𝐶𝑃 ∧ ((𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝐶 ∈ (𝐶𝐼𝑝))) → ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))
2918, 20, 23, 28syl12anc 836 . . . . . . 7 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))
3016, 29jca 511 . . . . . 6 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
3130ex 412 . . . . 5 (((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) → (((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))))
3231reximdva 3174 . . . 4 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → (∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))))
3315, 32mpd 15 . . 3 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
345adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
35 colperpex.5 . . . . 5 (𝜑𝐺DimTarskiG≥2)
3635adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺DimTarskiG≥2)
377adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
389adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
3912adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
401, 3, 4, 34, 36, 37, 38, 39tglowdim2ln 28679 . . 3 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑑𝑃 ¬ 𝑑 ∈ (𝐴𝐿𝐵))
4133, 40r19.29a 3168 . 2 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
425adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
437adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
449adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
4517adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐶𝑃)
4612adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
47 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
481, 2, 3, 4, 42, 43, 44, 45, 46, 47colperpexlem3 28760 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
4941, 48pm2.61dan 812 1 (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6575  (class class class)co 7450  2c2 12350  Basecbs 17260  distcds 17322  TarskiGcstrkg 28455  DimTarskiGcstrkgld 28459  Itvcitv 28461  LineGclng 28462  ⟂Gcperpg 28723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-oadd 8528  df-er 8765  df-map 8888  df-pm 8889  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-dju 9972  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-n0 12556  df-xnn0 12628  df-z 12642  df-uz 12906  df-fz 13570  df-fzo 13714  df-hash 14382  df-word 14565  df-concat 14621  df-s1 14646  df-s2 14899  df-s3 14900  df-trkgc 28476  df-trkgb 28477  df-trkgcb 28478  df-trkgld 28480  df-trkg 28481  df-cgrg 28539  df-leg 28611  df-mir 28681  df-rag 28722  df-perpg 28724
This theorem is referenced by:  midex  28765  oppperpex  28781
  Copyright terms: Public domain W3C validator