MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperpex Structured version   Visualization version   GIF version

Theorem colperpex 26511
Description: In dimension 2 and above, on a line (𝐴𝐿𝐵) there is always a perpendicular 𝑃 from 𝐴 on a given plane (here given by 𝐶, in case 𝐶 does not lie on the line). Theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
colperpex.1 (𝜑𝐴𝑃)
colperpex.2 (𝜑𝐵𝑃)
colperpex.3 (𝜑𝐶𝑃)
colperpex.4 (𝜑𝐴𝐵)
colperpex.5 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
colperpex (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
Distinct variable groups:   ,𝑝,𝑡   𝐴,𝑝,𝑡   𝐵,𝑝,𝑡   𝐶,𝑝,𝑡   𝐺,𝑝,𝑡   𝐼,𝑝,𝑡   𝐿,𝑝,𝑡   𝑃,𝑝,𝑡   𝜑,𝑝,𝑡

Proof of Theorem colperpex
Dummy variables 𝑠 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 colperpex.p . . . . 5 𝑃 = (Base‘𝐺)
2 colperpex.d . . . . 5 = (dist‘𝐺)
3 colperpex.i . . . . 5 𝐼 = (Itv‘𝐺)
4 colperpex.l . . . . 5 𝐿 = (LineG‘𝐺)
5 colperpex.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65ad3antrrr 728 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
7 colperpex.1 . . . . . 6 (𝜑𝐴𝑃)
87ad3antrrr 728 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
9 colperpex.2 . . . . . 6 (𝜑𝐵𝑃)
109ad3antrrr 728 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
11 simplr 767 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝑑𝑃)
12 colperpex.4 . . . . . 6 (𝜑𝐴𝐵)
1312ad3antrrr 728 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
14 simpr 487 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ¬ 𝑑 ∈ (𝐴𝐿𝐵))
151, 2, 3, 4, 6, 8, 10, 11, 13, 14colperpexlem3 26510 . . . 4 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))))
16 simprl 769 . . . . . . 7 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
17 colperpex.3 . . . . . . . . 9 (𝜑𝐶𝑃)
1817ad5antr 732 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶𝑃)
19 simp-5r 784 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶 ∈ (𝐴𝐿𝐵))
2019orcd 871 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
215ad5antr 732 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐺 ∈ TarskiG)
22 simplr 767 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝑝𝑃)
231, 2, 3, 21, 18, 22tgbtwntriv1 26269 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶 ∈ (𝐶𝐼𝑝))
24 eleq1 2898 . . . . . . . . . . 11 (𝑡 = 𝐶 → (𝑡 ∈ (𝐴𝐿𝐵) ↔ 𝐶 ∈ (𝐴𝐿𝐵)))
2524orbi1d 912 . . . . . . . . . 10 (𝑡 = 𝐶 → ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ↔ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)))
26 eleq1 2898 . . . . . . . . . 10 (𝑡 = 𝐶 → (𝑡 ∈ (𝐶𝐼𝑝) ↔ 𝐶 ∈ (𝐶𝐼𝑝)))
2725, 26anbi12d 632 . . . . . . . . 9 (𝑡 = 𝐶 → (((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)) ↔ ((𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝐶 ∈ (𝐶𝐼𝑝))))
2827rspcev 3621 . . . . . . . 8 ((𝐶𝑃 ∧ ((𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝐶 ∈ (𝐶𝐼𝑝))) → ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))
2918, 20, 23, 28syl12anc 834 . . . . . . 7 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))
3016, 29jca 514 . . . . . 6 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
3130ex 415 . . . . 5 (((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) → (((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))))
3231reximdva 3272 . . . 4 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → (∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))))
3315, 32mpd 15 . . 3 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
345adantr 483 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
35 colperpex.5 . . . . 5 (𝜑𝐺DimTarskiG≥2)
3635adantr 483 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺DimTarskiG≥2)
377adantr 483 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
389adantr 483 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
3912adantr 483 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
401, 3, 4, 34, 36, 37, 38, 39tglowdim2ln 26429 . . 3 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑑𝑃 ¬ 𝑑 ∈ (𝐴𝐿𝐵))
4133, 40r19.29a 3287 . 2 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
425adantr 483 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
437adantr 483 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
449adantr 483 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
4517adantr 483 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐶𝑃)
4612adantr 483 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
47 simpr 487 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
481, 2, 3, 4, 42, 43, 44, 45, 46, 47colperpexlem3 26510 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
4941, 48pm2.61dan 811 1 (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1530  wcel 2107  wne 3014  wrex 3137   class class class wbr 5057  cfv 6348  (class class class)co 7148  2c2 11684  Basecbs 16475  distcds 16566  TarskiGcstrkg 26208  DimTarskiGcstrkgld 26212  Itvcitv 26214  LineGclng 26215  ⟂Gcperpg 26473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-concat 13915  df-s1 13942  df-s2 14202  df-s3 14203  df-trkgc 26226  df-trkgb 26227  df-trkgcb 26228  df-trkgld 26230  df-trkg 26231  df-cgrg 26289  df-leg 26361  df-mir 26431  df-rag 26472  df-perpg 26474
This theorem is referenced by:  midex  26515  oppperpex  26531
  Copyright terms: Public domain W3C validator