| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlid | Structured version Visualization version GIF version | ||
| Description: The half-line relation is reflexive. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
| Ref | Expression |
|---|---|
| ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
| ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
| ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| hlid.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| hlid | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlid.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 2 | ishlg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | eqid 2729 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | ishlg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 7 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | 2, 3, 4, 5, 6, 7 | tgbtwntriv2 28450 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐴)) |
| 9 | 8 | olcd 874 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴))) |
| 10 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
| 11 | 2, 4, 10, 7, 7, 6, 5 | ishlg 28565 | . 2 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐴 ↔ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴))))) |
| 12 | 1, 1, 9, 11 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 distcds 17188 TarskiGcstrkg 28390 Itvcitv 28396 hlGchlg 28563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-trkgc 28411 df-trkgcb 28413 df-trkg 28416 df-hlg 28564 |
| This theorem is referenced by: opphl 28717 iscgra1 28773 cgraid 28782 cgrcgra 28784 dfcgra2 28793 tgsas1 28817 tgsas2 28819 tgsas3 28820 tgasa1 28821 |
| Copyright terms: Public domain | W3C validator |