MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlid Structured version   Visualization version   GIF version

Theorem hlid 28580
Description: The half-line relation is reflexive. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hlid.1 (𝜑𝐴𝐶)
Assertion
Ref Expression
hlid (𝜑𝐴(𝐾𝐶)𝐴)

Proof of Theorem hlid
StepHypRef Expression
1 hlid.1 . 2 (𝜑𝐴𝐶)
2 ishlg.p . . . 4 𝑃 = (Base‘𝐺)
3 eqid 2730 . . . 4 (dist‘𝐺) = (dist‘𝐺)
4 ishlg.i . . . 4 𝐼 = (Itv‘𝐺)
5 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
6 ishlg.c . . . 4 (𝜑𝐶𝑃)
7 ishlg.a . . . 4 (𝜑𝐴𝑃)
82, 3, 4, 5, 6, 7tgbtwntriv2 28458 . . 3 (𝜑𝐴 ∈ (𝐶𝐼𝐴))
98olcd 874 . 2 (𝜑 → (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴)))
10 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
112, 4, 10, 7, 7, 6, 5ishlg 28573 . 2 (𝜑 → (𝐴(𝐾𝐶)𝐴 ↔ (𝐴𝐶𝐴𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴)))))
121, 1, 9, 11mpbir3and 1343 1 (𝜑𝐴(𝐾𝐶)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2110  wne 2926   class class class wbr 5089  cfv 6477  (class class class)co 7341  Basecbs 17112  distcds 17162  TarskiGcstrkg 28398  Itvcitv 28404  hlGchlg 28571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-trkgc 28419  df-trkgcb 28421  df-trkg 28424  df-hlg 28572
This theorem is referenced by:  opphl  28725  iscgra1  28781  cgraid  28790  cgrcgra  28792  dfcgra2  28801  tgsas1  28825  tgsas2  28827  tgsas3  28828  tgasa1  28829
  Copyright terms: Public domain W3C validator