![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlid | Structured version Visualization version GIF version |
Description: The half-line relation is reflexive. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | β’ π = (BaseβπΊ) |
ishlg.i | β’ πΌ = (ItvβπΊ) |
ishlg.k | β’ πΎ = (hlGβπΊ) |
ishlg.a | β’ (π β π΄ β π) |
ishlg.b | β’ (π β π΅ β π) |
ishlg.c | β’ (π β πΆ β π) |
hlln.1 | β’ (π β πΊ β TarskiG) |
hlid.1 | β’ (π β π΄ β πΆ) |
Ref | Expression |
---|---|
hlid | β’ (π β π΄(πΎβπΆ)π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlid.1 | . 2 β’ (π β π΄ β πΆ) | |
2 | ishlg.p | . . . 4 β’ π = (BaseβπΊ) | |
3 | eqid 2730 | . . . 4 β’ (distβπΊ) = (distβπΊ) | |
4 | ishlg.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
5 | hlln.1 | . . . 4 β’ (π β πΊ β TarskiG) | |
6 | ishlg.c | . . . 4 β’ (π β πΆ β π) | |
7 | ishlg.a | . . . 4 β’ (π β π΄ β π) | |
8 | 2, 3, 4, 5, 6, 7 | tgbtwntriv2 28003 | . . 3 β’ (π β π΄ β (πΆπΌπ΄)) |
9 | 8 | olcd 870 | . 2 β’ (π β (π΄ β (πΆπΌπ΄) β¨ π΄ β (πΆπΌπ΄))) |
10 | ishlg.k | . . 3 β’ πΎ = (hlGβπΊ) | |
11 | 2, 4, 10, 7, 7, 6, 5 | ishlg 28118 | . 2 β’ (π β (π΄(πΎβπΆ)π΄ β (π΄ β πΆ β§ π΄ β πΆ β§ (π΄ β (πΆπΌπ΄) β¨ π΄ β (πΆπΌπ΄))))) |
12 | 1, 1, 9, 11 | mpbir3and 1340 | 1 β’ (π β π΄(πΎβπΆ)π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ wo 843 = wceq 1539 β wcel 2104 β wne 2938 class class class wbr 5149 βcfv 6544 (class class class)co 7413 Basecbs 17150 distcds 17212 TarskiGcstrkg 27943 Itvcitv 27949 hlGchlg 28116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-trkgc 27964 df-trkgcb 27966 df-trkg 27969 df-hlg 28117 |
This theorem is referenced by: opphl 28270 iscgra1 28326 cgraid 28335 cgrcgra 28337 dfcgra2 28346 tgsas1 28370 tgsas2 28372 tgsas3 28373 tgasa1 28374 |
Copyright terms: Public domain | W3C validator |