![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlid | Structured version Visualization version GIF version |
Description: The half-line relation is reflexive. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hlid.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
hlid | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlid.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
2 | ishlg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | eqid 2726 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | ishlg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | 2, 3, 4, 5, 6, 7 | tgbtwntriv2 28414 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐴)) |
9 | 8 | olcd 872 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴))) |
10 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
11 | 2, 4, 10, 7, 7, 6, 5 | ishlg 28529 | . 2 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐴 ↔ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴))))) |
12 | 1, 1, 9, 11 | mpbir3and 1339 | 1 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 distcds 17275 TarskiGcstrkg 28354 Itvcitv 28360 hlGchlg 28527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-trkgc 28375 df-trkgcb 28377 df-trkg 28380 df-hlg 28528 |
This theorem is referenced by: opphl 28681 iscgra1 28737 cgraid 28746 cgrcgra 28748 dfcgra2 28757 tgsas1 28781 tgsas2 28783 tgsas3 28784 tgasa1 28785 |
Copyright terms: Public domain | W3C validator |