Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlid | Structured version Visualization version GIF version |
Description: The half-line relation is reflexive. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hlid.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
hlid | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlid.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
2 | ishlg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | eqid 2738 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | ishlg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | 2, 3, 4, 5, 6, 7 | tgbtwntriv2 26846 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐴)) |
9 | 8 | olcd 871 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴))) |
10 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
11 | 2, 4, 10, 7, 7, 6, 5 | ishlg 26961 | . 2 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐴 ↔ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴))))) |
12 | 1, 1, 9, 11 | mpbir3and 1341 | 1 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5076 ‘cfv 6435 (class class class)co 7277 Basecbs 16910 distcds 16969 TarskiGcstrkg 26786 Itvcitv 26792 hlGchlg 26959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-ov 7280 df-trkgc 26807 df-trkgcb 26809 df-trkg 26812 df-hlg 26960 |
This theorem is referenced by: opphl 27113 iscgra1 27169 cgraid 27178 cgrcgra 27180 dfcgra2 27189 tgsas1 27213 tgsas2 27215 tgsas3 27216 tgasa1 27217 |
Copyright terms: Public domain | W3C validator |