| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlid | Structured version Visualization version GIF version | ||
| Description: The half-line relation is reflexive. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
| Ref | Expression |
|---|---|
| ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
| ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
| ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| hlid.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| hlid | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlid.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 2 | ishlg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | eqid 2733 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | ishlg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 7 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | 2, 3, 4, 5, 6, 7 | tgbtwntriv2 28475 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐴)) |
| 9 | 8 | olcd 874 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴))) |
| 10 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
| 11 | 2, 4, 10, 7, 7, 6, 5 | ishlg 28590 | . 2 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐴 ↔ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴))))) |
| 12 | 1, 1, 9, 11 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 distcds 17180 TarskiGcstrkg 28415 Itvcitv 28421 hlGchlg 28588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-trkgc 28436 df-trkgcb 28438 df-trkg 28441 df-hlg 28589 |
| This theorem is referenced by: opphl 28742 iscgra1 28798 cgraid 28807 cgrcgra 28809 dfcgra2 28818 tgsas1 28842 tgsas2 28844 tgsas3 28845 tgasa1 28846 |
| Copyright terms: Public domain | W3C validator |