Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlid | Structured version Visualization version GIF version |
Description: The half-line relation is reflexive. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hlid.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
hlid | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlid.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
2 | ishlg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | eqid 2738 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | ishlg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | 2, 3, 4, 5, 6, 7 | tgbtwntriv2 26752 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐴)) |
9 | 8 | olcd 870 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴))) |
10 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
11 | 2, 4, 10, 7, 7, 6, 5 | ishlg 26867 | . 2 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐴 ↔ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐴))))) |
12 | 1, 1, 9, 11 | mpbir3and 1340 | 1 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 hlGchlg 26865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-trkgc 26713 df-trkgcb 26715 df-trkg 26718 df-hlg 26866 |
This theorem is referenced by: opphl 27019 iscgra1 27075 cgraid 27084 cgrcgra 27086 dfcgra2 27095 tgsas1 27119 tgsas2 27121 tgsas3 27122 tgasa1 27123 |
Copyright terms: Public domain | W3C validator |