![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglinerflx2 | Structured version Visualization version GIF version |
Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
Ref | Expression |
---|---|
tglinerflx2 | ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐿𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineelsb2.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tglineelsb2.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
6 | tglineelsb2.2 | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
7 | tglineelsb2.4 | . 2 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
8 | eqid 2731 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
9 | 1, 8, 2, 4, 5, 6 | tgbtwntriv2 28171 | . 2 ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐼𝑄)) |
10 | 1, 2, 3, 4, 5, 6, 6, 7, 9 | btwnlng1 28303 | 1 ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐿𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 distcds 17213 TarskiGcstrkg 28111 Itvcitv 28117 LineGclng 28118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-trkgc 28132 df-trkgcb 28134 df-trkg 28137 |
This theorem is referenced by: tghilberti1 28321 tglnpt2 28325 colline 28333 footexALT 28402 footexlem2 28404 foot 28406 footne 28407 perprag 28410 colperpexlem3 28416 mideulem2 28418 opphllem 28419 opphllem5 28435 opphllem6 28436 opphl 28438 outpasch 28439 hlpasch 28440 lnopp2hpgb 28447 hypcgrlem1 28483 hypcgrlem2 28484 trgcopyeulem 28489 acopy 28517 acopyeu 28518 tgasa1 28542 |
Copyright terms: Public domain | W3C validator |