Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tglinerflx2 | Structured version Visualization version GIF version |
Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
Ref | Expression |
---|---|
tglinerflx2 | ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐿𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineelsb2.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tglineelsb2.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
6 | tglineelsb2.2 | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
7 | tglineelsb2.4 | . 2 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
8 | eqid 2738 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
9 | 1, 8, 2, 4, 5, 6 | tgbtwntriv2 26848 | . 2 ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐼𝑄)) |
10 | 1, 2, 3, 4, 5, 6, 6, 7, 9 | btwnlng1 26980 | 1 ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐿𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 distcds 16971 TarskiGcstrkg 26788 Itvcitv 26794 LineGclng 26795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-trkgc 26809 df-trkgcb 26811 df-trkg 26814 |
This theorem is referenced by: tghilberti1 26998 tglnpt2 27002 colline 27010 footexALT 27079 footexlem2 27081 foot 27083 footne 27084 perprag 27087 colperpexlem3 27093 mideulem2 27095 opphllem 27096 opphllem5 27112 opphllem6 27113 opphl 27115 outpasch 27116 hlpasch 27117 lnopp2hpgb 27124 hypcgrlem1 27160 hypcgrlem2 27161 trgcopyeulem 27166 acopy 27194 acopyeu 27195 tgasa1 27219 |
Copyright terms: Public domain | W3C validator |