MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinerflx2 Structured version   Visualization version   GIF version

Theorem tglinerflx2 28660
Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tglinerflx2 (𝜑𝑄 ∈ (𝑃𝐿𝑄))

Proof of Theorem tglinerflx2
StepHypRef Expression
1 tglineelsb2.p . 2 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . 2 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . 2 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tglineelsb2.1 . 2 (𝜑𝑃𝐵)
6 tglineelsb2.2 . 2 (𝜑𝑄𝐵)
7 tglineelsb2.4 . 2 (𝜑𝑃𝑄)
8 eqid 2740 . . 3 (dist‘𝐺) = (dist‘𝐺)
91, 8, 2, 4, 5, 6tgbtwntriv2 28513 . 2 (𝜑𝑄 ∈ (𝑃𝐼𝑄))
101, 2, 3, 4, 5, 6, 6, 7, 9btwnlng1 28645 1 (𝜑𝑄 ∈ (𝑃𝐿𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-trkgc 28474  df-trkgcb 28476  df-trkg 28479
This theorem is referenced by:  tghilberti1  28663  tglnpt2  28667  colline  28675  footexALT  28744  footexlem2  28746  foot  28748  footne  28749  perprag  28752  colperpexlem3  28758  mideulem2  28760  opphllem  28761  opphllem5  28777  opphllem6  28778  opphl  28780  outpasch  28781  hlpasch  28782  lnopp2hpgb  28789  hypcgrlem1  28825  hypcgrlem2  28826  trgcopyeulem  28831  acopy  28859  acopyeu  28860  tgasa1  28884
  Copyright terms: Public domain W3C validator