MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinerflx2 Structured version   Visualization version   GIF version

Theorem tglinerflx2 28642
Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tglinerflx2 (𝜑𝑄 ∈ (𝑃𝐿𝑄))

Proof of Theorem tglinerflx2
StepHypRef Expression
1 tglineelsb2.p . 2 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . 2 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . 2 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tglineelsb2.1 . 2 (𝜑𝑃𝐵)
6 tglineelsb2.2 . 2 (𝜑𝑄𝐵)
7 tglineelsb2.4 . 2 (𝜑𝑃𝑄)
8 eqid 2737 . . 3 (dist‘𝐺) = (dist‘𝐺)
91, 8, 2, 4, 5, 6tgbtwntriv2 28495 . 2 (𝜑𝑄 ∈ (𝑃𝐼𝑄))
101, 2, 3, 4, 5, 6, 6, 7, 9btwnlng1 28627 1 (𝜑𝑄 ∈ (𝑃𝐿𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2940  cfv 6561  (class class class)co 7431  Basecbs 17247  distcds 17306  TarskiGcstrkg 28435  Itvcitv 28441  LineGclng 28442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-trkgc 28456  df-trkgcb 28458  df-trkg 28461
This theorem is referenced by:  tghilberti1  28645  tglnpt2  28649  colline  28657  footexALT  28726  footexlem2  28728  foot  28730  footne  28731  perprag  28734  colperpexlem3  28740  mideulem2  28742  opphllem  28743  opphllem5  28759  opphllem6  28760  opphl  28762  outpasch  28763  hlpasch  28764  lnopp2hpgb  28771  hypcgrlem1  28807  hypcgrlem2  28808  trgcopyeulem  28813  acopy  28841  acopyeu  28842  tgasa1  28866
  Copyright terms: Public domain W3C validator