MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinerflx2 Structured version   Visualization version   GIF version

Theorem tglinerflx2 28579
Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tglinerflx2 (𝜑𝑄 ∈ (𝑃𝐿𝑄))

Proof of Theorem tglinerflx2
StepHypRef Expression
1 tglineelsb2.p . 2 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . 2 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . 2 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tglineelsb2.1 . 2 (𝜑𝑃𝐵)
6 tglineelsb2.2 . 2 (𝜑𝑄𝐵)
7 tglineelsb2.4 . 2 (𝜑𝑃𝑄)
8 eqid 2729 . . 3 (dist‘𝐺) = (dist‘𝐺)
91, 8, 2, 4, 5, 6tgbtwntriv2 28432 . 2 (𝜑𝑄 ∈ (𝑃𝐼𝑄))
101, 2, 3, 4, 5, 6, 6, 7, 9btwnlng1 28564 1 (𝜑𝑄 ∈ (𝑃𝐿𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  cfv 6482  (class class class)co 7349  Basecbs 17120  distcds 17170  TarskiGcstrkg 28372  Itvcitv 28378  LineGclng 28379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-trkgc 28393  df-trkgcb 28395  df-trkg 28398
This theorem is referenced by:  tghilberti1  28582  tglnpt2  28586  colline  28594  footexALT  28663  footexlem2  28665  foot  28667  footne  28668  perprag  28671  colperpexlem3  28677  mideulem2  28679  opphllem  28680  opphllem5  28696  opphllem6  28697  opphl  28699  outpasch  28700  hlpasch  28701  lnopp2hpgb  28708  hypcgrlem1  28744  hypcgrlem2  28745  trgcopyeulem  28750  acopy  28778  acopyeu  28779  tgasa1  28803
  Copyright terms: Public domain W3C validator