| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglinerflx2 | Structured version Visualization version GIF version | ||
| Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
| Ref | Expression |
|---|---|
| tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
| tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| Ref | Expression |
|---|---|
| tglinerflx2 | ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐿𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineelsb2.p | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | tglineelsb2.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 3 | tglineelsb2.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglineelsb2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tglineelsb2.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
| 6 | tglineelsb2.2 | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
| 7 | tglineelsb2.4 | . 2 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
| 8 | eqid 2729 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 9 | 1, 8, 2, 4, 5, 6 | tgbtwntriv2 28432 | . 2 ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐼𝑄)) |
| 10 | 1, 2, 3, 4, 5, 6, 6, 7, 9 | btwnlng1 28564 | 1 ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐿𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 distcds 17170 TarskiGcstrkg 28372 Itvcitv 28378 LineGclng 28379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-trkgc 28393 df-trkgcb 28395 df-trkg 28398 |
| This theorem is referenced by: tghilberti1 28582 tglnpt2 28586 colline 28594 footexALT 28663 footexlem2 28665 foot 28667 footne 28668 perprag 28671 colperpexlem3 28677 mideulem2 28679 opphllem 28680 opphllem5 28696 opphllem6 28697 opphl 28699 outpasch 28700 hlpasch 28701 lnopp2hpgb 28708 hypcgrlem1 28744 hypcgrlem2 28745 trgcopyeulem 28750 acopy 28778 acopyeu 28779 tgasa1 28803 |
| Copyright terms: Public domain | W3C validator |