![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglinerflx2 | Structured version Visualization version GIF version |
Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | β’ π΅ = (BaseβπΊ) |
tglineelsb2.i | β’ πΌ = (ItvβπΊ) |
tglineelsb2.l | β’ πΏ = (LineGβπΊ) |
tglineelsb2.g | β’ (π β πΊ β TarskiG) |
tglineelsb2.1 | β’ (π β π β π΅) |
tglineelsb2.2 | β’ (π β π β π΅) |
tglineelsb2.4 | β’ (π β π β π) |
Ref | Expression |
---|---|
tglinerflx2 | β’ (π β π β (ππΏπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . 2 β’ π΅ = (BaseβπΊ) | |
2 | tglineelsb2.i | . 2 β’ πΌ = (ItvβπΊ) | |
3 | tglineelsb2.l | . 2 β’ πΏ = (LineGβπΊ) | |
4 | tglineelsb2.g | . 2 β’ (π β πΊ β TarskiG) | |
5 | tglineelsb2.1 | . 2 β’ (π β π β π΅) | |
6 | tglineelsb2.2 | . 2 β’ (π β π β π΅) | |
7 | tglineelsb2.4 | . 2 β’ (π β π β π) | |
8 | eqid 2731 | . . 3 β’ (distβπΊ) = (distβπΊ) | |
9 | 1, 8, 2, 4, 5, 6 | tgbtwntriv2 28006 | . 2 β’ (π β π β (ππΌπ)) |
10 | 1, 2, 3, 4, 5, 6, 6, 7, 9 | btwnlng1 28138 | 1 β’ (π β π β (ππΏπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β wne 2939 βcfv 6543 (class class class)co 7412 Basecbs 17149 distcds 17211 TarskiGcstrkg 27946 Itvcitv 27952 LineGclng 27953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-trkgc 27967 df-trkgcb 27969 df-trkg 27972 |
This theorem is referenced by: tghilberti1 28156 tglnpt2 28160 colline 28168 footexALT 28237 footexlem2 28239 foot 28241 footne 28242 perprag 28245 colperpexlem3 28251 mideulem2 28253 opphllem 28254 opphllem5 28270 opphllem6 28271 opphl 28273 outpasch 28274 hlpasch 28275 lnopp2hpgb 28282 hypcgrlem1 28318 hypcgrlem2 28319 trgcopyeulem 28324 acopy 28352 acopyeu 28353 tgasa1 28377 |
Copyright terms: Public domain | W3C validator |