MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symquadlem Structured version   Visualization version   GIF version

Theorem symquadlem 28616
Description: Lemma of the symetrial quadrilateral. The diagonals of quadrilaterals with congruent opposing sides intersect at their middle point. In Euclidean geometry, such quadrilaterals are called parallelograms, as opposing sides are parallel. However, this is not necessarily true in the case of absolute geometry. Lemma 7.21 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
symquadlem.m 𝑀 = (𝑆𝑋)
symquadlem.a (𝜑𝐴𝑃)
symquadlem.b (𝜑𝐵𝑃)
symquadlem.c (𝜑𝐶𝑃)
symquadlem.d (𝜑𝐷𝑃)
symquadlem.x (𝜑𝑋𝑃)
symquadlem.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
symquadlem.2 (𝜑𝐵𝐷)
symquadlem.3 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
symquadlem.4 (𝜑 → (𝐵 𝐶) = (𝐷 𝐴))
symquadlem.5 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
symquadlem.6 (𝜑 → (𝑋 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷))
Assertion
Ref Expression
symquadlem (𝜑𝐴 = (𝑀𝐶))

Proof of Theorem symquadlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 symquadlem.1 . . . . . . . 8 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
2 mirval.p . . . . . . . . . . 11 𝑃 = (Base‘𝐺)
3 mirval.l . . . . . . . . . . 11 𝐿 = (LineG‘𝐺)
4 mirval.i . . . . . . . . . . 11 𝐼 = (Itv‘𝐺)
5 mirval.g . . . . . . . . . . 11 (𝜑𝐺 ∈ TarskiG)
6 symquadlem.b . . . . . . . . . . 11 (𝜑𝐵𝑃)
7 symquadlem.a . . . . . . . . . . 11 (𝜑𝐴𝑃)
8 mirval.d . . . . . . . . . . . 12 = (dist‘𝐺)
92, 8, 4, 5, 6, 7tgbtwntriv2 28414 . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐵𝐼𝐴))
102, 3, 4, 5, 6, 7, 7, 9btwncolg1 28482 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
1110adantr 480 . . . . . . . . 9 ((𝜑𝐴 = 𝐶) → (𝐴 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
12 simpr 484 . . . . . . . . . . . 12 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐶)
1312oveq2d 7403 . . . . . . . . . . 11 ((𝜑𝐴 = 𝐶) → (𝐵𝐿𝐴) = (𝐵𝐿𝐶))
1413eleq2d 2814 . . . . . . . . . 10 ((𝜑𝐴 = 𝐶) → (𝐴 ∈ (𝐵𝐿𝐴) ↔ 𝐴 ∈ (𝐵𝐿𝐶)))
1512eqeq2d 2740 . . . . . . . . . 10 ((𝜑𝐴 = 𝐶) → (𝐵 = 𝐴𝐵 = 𝐶))
1614, 15orbi12d 918 . . . . . . . . 9 ((𝜑𝐴 = 𝐶) → ((𝐴 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ↔ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)))
1711, 16mpbid 232 . . . . . . . 8 ((𝜑𝐴 = 𝐶) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
181, 17mtand 815 . . . . . . 7 (𝜑 → ¬ 𝐴 = 𝐶)
1918neqned 2932 . . . . . 6 (𝜑𝐴𝐶)
2019ad2antrr 726 . . . . 5 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐴𝐶)
2120necomd 2980 . . . 4 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐶𝐴)
2221neneqd 2930 . . 3 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → ¬ 𝐶 = 𝐴)
23 mirval.s . . . . . 6 𝑆 = (pInvG‘𝐺)
245ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐺 ∈ TarskiG)
25 symquadlem.m . . . . . 6 𝑀 = (𝑆𝑋)
26 symquadlem.c . . . . . . 7 (𝜑𝐶𝑃)
2726ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐶𝑃)
287ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐴𝑃)
29 symquadlem.x . . . . . . 7 (𝜑𝑋𝑃)
3029ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝑋𝑃)
31 symquadlem.5 . . . . . . . 8 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
3231ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
332, 3, 4, 24, 28, 27, 30, 32colcom 28485 . . . . . 6 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑋 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
346ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐵𝑃)
35 symquadlem.d . . . . . . . . 9 (𝜑𝐷𝑃)
3635ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐷𝑃)
37 eqid 2729 . . . . . . . 8 (cgrG‘𝐺) = (cgrG‘𝐺)
38 simplr 768 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝑥𝑃)
39 symquadlem.6 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷))
402, 3, 4, 5, 6, 35, 29, 39colrot2 28487 . . . . . . . . . 10 (𝜑 → (𝐷 ∈ (𝑋𝐿𝐵) ∨ 𝑋 = 𝐵))
412, 3, 4, 5, 29, 6, 35, 40colcom 28485 . . . . . . . . 9 (𝜑 → (𝐷 ∈ (𝐵𝐿𝑋) ∨ 𝐵 = 𝑋))
4241ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐷 ∈ (𝐵𝐿𝑋) ∨ 𝐵 = 𝑋))
43 simpr 484 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩)
44 symquadlem.4 . . . . . . . . 9 (𝜑 → (𝐵 𝐶) = (𝐷 𝐴))
4544ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐵 𝐶) = (𝐷 𝐴))
46 symquadlem.3 . . . . . . . . . . 11 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
472, 8, 4, 5, 7, 6, 26, 35, 46tgcgrcomlr 28407 . . . . . . . . . 10 (𝜑 → (𝐵 𝐴) = (𝐷 𝐶))
4847ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐵 𝐴) = (𝐷 𝐶))
4948eqcomd 2735 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐷 𝐶) = (𝐵 𝐴))
50 symquadlem.2 . . . . . . . . 9 (𝜑𝐵𝐷)
5150ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐵𝐷)
522, 3, 4, 24, 34, 36, 30, 37, 36, 34, 8, 27, 38, 28, 42, 43, 45, 49, 51tgfscgr 28495 . . . . . . 7 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑋 𝐶) = (𝑥 𝐴))
532, 3, 4, 5, 6, 26, 7, 1ncolcom 28488 . . . . . . . . . 10 (𝜑 → ¬ (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
5453ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → ¬ (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
5531orcomd 871 . . . . . . . . . . . 12 (𝜑 → (𝐴 = 𝐶𝑋 ∈ (𝐴𝐿𝐶)))
5655ord 864 . . . . . . . . . . 11 (𝜑 → (¬ 𝐴 = 𝐶𝑋 ∈ (𝐴𝐿𝐶)))
5718, 56mpd 15 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐴𝐿𝐶))
5857ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝑋 ∈ (𝐴𝐿𝐶))
5918ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → ¬ 𝐴 = 𝐶)
6045eqcomd 2735 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐷 𝐴) = (𝐵 𝐶))
612, 3, 4, 24, 34, 36, 30, 37, 36, 34, 8, 28, 38, 27, 42, 43, 48, 60, 51tgfscgr 28495 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑋 𝐴) = (𝑥 𝐶))
622, 8, 4, 24, 30, 28, 38, 27, 61tgcgrcomlr 28407 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐴 𝑋) = (𝐶 𝑥))
632, 8, 4, 24, 27, 28axtgcgrrflx 28389 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐶 𝐴) = (𝐴 𝐶))
642, 8, 37, 24, 28, 30, 27, 27, 38, 28, 62, 52, 63trgcgr 28443 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → ⟨“𝐴𝑋𝐶”⟩(cgrG‘𝐺)⟨“𝐶𝑥𝐴”⟩)
652, 3, 4, 24, 28, 30, 27, 37, 27, 38, 28, 32, 64lnxfr 28493 . . . . . . . . . . . . 13 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑥 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
662, 3, 4, 24, 27, 28, 38, 65colcom 28485 . . . . . . . . . . . 12 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑥 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
6766orcomd 871 . . . . . . . . . . 11 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐴 = 𝐶𝑥 ∈ (𝐴𝐿𝐶)))
6867ord 864 . . . . . . . . . 10 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (¬ 𝐴 = 𝐶𝑥 ∈ (𝐴𝐿𝐶)))
6959, 68mpd 15 . . . . . . . . 9 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝑥 ∈ (𝐴𝐿𝐶))
7050neneqd 2930 . . . . . . . . . . 11 (𝜑 → ¬ 𝐵 = 𝐷)
7139orcomd 871 . . . . . . . . . . . 12 (𝜑 → (𝐵 = 𝐷𝑋 ∈ (𝐵𝐿𝐷)))
7271ord 864 . . . . . . . . . . 11 (𝜑 → (¬ 𝐵 = 𝐷𝑋 ∈ (𝐵𝐿𝐷)))
7370, 72mpd 15 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵𝐿𝐷))
7473ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝑋 ∈ (𝐵𝐿𝐷))
7570ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → ¬ 𝐵 = 𝐷)
7639ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑋 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷))
772, 8, 4, 37, 24, 34, 36, 30, 36, 34, 38, 43cgr3swap23 28451 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → ⟨“𝐵𝑋𝐷”⟩(cgrG‘𝐺)⟨“𝐷𝑥𝐵”⟩)
782, 3, 4, 24, 34, 30, 36, 37, 36, 38, 34, 76, 77lnxfr 28493 . . . . . . . . . . . . 13 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑥 ∈ (𝐷𝐿𝐵) ∨ 𝐷 = 𝐵))
792, 3, 4, 24, 36, 34, 38, 78colcom 28485 . . . . . . . . . . . 12 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑥 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷))
8079orcomd 871 . . . . . . . . . . 11 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐵 = 𝐷𝑥 ∈ (𝐵𝐿𝐷)))
8180ord 864 . . . . . . . . . 10 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (¬ 𝐵 = 𝐷𝑥 ∈ (𝐵𝐿𝐷)))
8275, 81mpd 15 . . . . . . . . 9 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝑥 ∈ (𝐵𝐿𝐷))
832, 4, 3, 24, 28, 27, 34, 36, 54, 58, 69, 74, 82tglineinteq 28572 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝑋 = 𝑥)
8483oveq1d 7402 . . . . . . 7 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑋 𝐴) = (𝑥 𝐴))
8552, 84eqtr4d 2767 . . . . . 6 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝑋 𝐶) = (𝑋 𝐴))
862, 8, 4, 3, 23, 24, 25, 27, 28, 30, 33, 85colmid 28615 . . . . 5 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐴 = (𝑀𝐶) ∨ 𝐶 = 𝐴))
8786orcomd 871 . . . 4 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (𝐶 = 𝐴𝐴 = (𝑀𝐶)))
8887ord 864 . . 3 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → (¬ 𝐶 = 𝐴𝐴 = (𝑀𝐶)))
8922, 88mpd 15 . 2 (((𝜑𝑥𝑃) ∧ ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩) → 𝐴 = (𝑀𝐶))
902, 8, 4, 5, 6, 35axtgcgrrflx 28389 . . 3 (𝜑 → (𝐵 𝐷) = (𝐷 𝐵))
912, 3, 4, 5, 6, 35, 29, 37, 35, 6, 8, 41, 90lnext 28494 . 2 (𝜑 → ∃𝑥𝑃 ⟨“𝐵𝐷𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐵𝑥”⟩)
9289, 91r19.29a 3141 1 (𝜑𝐴 = (𝑀𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  ⟨“cs3 14808  Basecbs 17179  distcds 17229  TarskiGcstrkg 28354  Itvcitv 28360  LineGclng 28361  cgrGccgrg 28437  pInvGcmir 28579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-trkgc 28375  df-trkgb 28376  df-trkgcb 28377  df-trkg 28380  df-cgrg 28438  df-mir 28580
This theorem is referenced by:  opphllem  28662
  Copyright terms: Public domain W3C validator