MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symquadlem Structured version   Visualization version   GIF version

Theorem symquadlem 28208
Description: Lemma of the symetrial quadrilateral. The diagonals of quadrilaterals with congruent opposing sides intersect at their middle point. In Euclidean geometry, such quadrilaterals are called parallelograms, as opposing sides are parallel. However, this is not necessarily true in the case of absolute geometry. Lemma 7.21 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Baseβ€˜πΊ)
mirval.d βˆ’ = (distβ€˜πΊ)
mirval.i 𝐼 = (Itvβ€˜πΊ)
mirval.l 𝐿 = (LineGβ€˜πΊ)
mirval.s 𝑆 = (pInvGβ€˜πΊ)
mirval.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
symquadlem.m 𝑀 = (π‘†β€˜π‘‹)
symquadlem.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
symquadlem.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
symquadlem.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
symquadlem.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
symquadlem.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
symquadlem.1 (πœ‘ β†’ Β¬ (𝐴 ∈ (𝐡𝐿𝐢) ∨ 𝐡 = 𝐢))
symquadlem.2 (πœ‘ β†’ 𝐡 β‰  𝐷)
symquadlem.3 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
symquadlem.4 (πœ‘ β†’ (𝐡 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐴))
symquadlem.5 (πœ‘ β†’ (𝑋 ∈ (𝐴𝐿𝐢) ∨ 𝐴 = 𝐢))
symquadlem.6 (πœ‘ β†’ (𝑋 ∈ (𝐡𝐿𝐷) ∨ 𝐡 = 𝐷))
Assertion
Ref Expression
symquadlem (πœ‘ β†’ 𝐴 = (π‘€β€˜πΆ))

Proof of Theorem symquadlem
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 symquadlem.1 . . . . . . . 8 (πœ‘ β†’ Β¬ (𝐴 ∈ (𝐡𝐿𝐢) ∨ 𝐡 = 𝐢))
2 mirval.p . . . . . . . . . . 11 𝑃 = (Baseβ€˜πΊ)
3 mirval.l . . . . . . . . . . 11 𝐿 = (LineGβ€˜πΊ)
4 mirval.i . . . . . . . . . . 11 𝐼 = (Itvβ€˜πΊ)
5 mirval.g . . . . . . . . . . 11 (πœ‘ β†’ 𝐺 ∈ TarskiG)
6 symquadlem.b . . . . . . . . . . 11 (πœ‘ β†’ 𝐡 ∈ 𝑃)
7 symquadlem.a . . . . . . . . . . 11 (πœ‘ β†’ 𝐴 ∈ 𝑃)
8 mirval.d . . . . . . . . . . . 12 βˆ’ = (distβ€˜πΊ)
92, 8, 4, 5, 6, 7tgbtwntriv2 28006 . . . . . . . . . . 11 (πœ‘ β†’ 𝐴 ∈ (𝐡𝐼𝐴))
102, 3, 4, 5, 6, 7, 7, 9btwncolg1 28074 . . . . . . . . . 10 (πœ‘ β†’ (𝐴 ∈ (𝐡𝐿𝐴) ∨ 𝐡 = 𝐴))
1110adantr 480 . . . . . . . . 9 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ (𝐴 ∈ (𝐡𝐿𝐴) ∨ 𝐡 = 𝐴))
12 simpr 484 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐴 = 𝐢)
1312oveq2d 7428 . . . . . . . . . . 11 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ (𝐡𝐿𝐴) = (𝐡𝐿𝐢))
1413eleq2d 2818 . . . . . . . . . 10 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ (𝐴 ∈ (𝐡𝐿𝐴) ↔ 𝐴 ∈ (𝐡𝐿𝐢)))
1512eqeq2d 2742 . . . . . . . . . 10 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ (𝐡 = 𝐴 ↔ 𝐡 = 𝐢))
1614, 15orbi12d 916 . . . . . . . . 9 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ ((𝐴 ∈ (𝐡𝐿𝐴) ∨ 𝐡 = 𝐴) ↔ (𝐴 ∈ (𝐡𝐿𝐢) ∨ 𝐡 = 𝐢)))
1711, 16mpbid 231 . . . . . . . 8 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ (𝐴 ∈ (𝐡𝐿𝐢) ∨ 𝐡 = 𝐢))
181, 17mtand 813 . . . . . . 7 (πœ‘ β†’ Β¬ 𝐴 = 𝐢)
1918neqned 2946 . . . . . 6 (πœ‘ β†’ 𝐴 β‰  𝐢)
2019ad2antrr 723 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ 𝐴 β‰  𝐢)
2120necomd 2995 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ 𝐢 β‰  𝐴)
2221neneqd 2944 . . 3 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ Β¬ 𝐢 = 𝐴)
23 mirval.s . . . . . 6 𝑆 = (pInvGβ€˜πΊ)
245ad2antrr 723 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ 𝐺 ∈ TarskiG)
25 symquadlem.m . . . . . 6 𝑀 = (π‘†β€˜π‘‹)
26 symquadlem.c . . . . . . 7 (πœ‘ β†’ 𝐢 ∈ 𝑃)
2726ad2antrr 723 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ 𝐢 ∈ 𝑃)
287ad2antrr 723 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ 𝐴 ∈ 𝑃)
29 symquadlem.x . . . . . . 7 (πœ‘ β†’ 𝑋 ∈ 𝑃)
3029ad2antrr 723 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ 𝑋 ∈ 𝑃)
31 symquadlem.5 . . . . . . . 8 (πœ‘ β†’ (𝑋 ∈ (𝐴𝐿𝐢) ∨ 𝐴 = 𝐢))
3231ad2antrr 723 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝑋 ∈ (𝐴𝐿𝐢) ∨ 𝐴 = 𝐢))
332, 3, 4, 24, 28, 27, 30, 32colcom 28077 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝑋 ∈ (𝐢𝐿𝐴) ∨ 𝐢 = 𝐴))
346ad2antrr 723 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ 𝐡 ∈ 𝑃)
35 symquadlem.d . . . . . . . . 9 (πœ‘ β†’ 𝐷 ∈ 𝑃)
3635ad2antrr 723 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ 𝐷 ∈ 𝑃)
37 eqid 2731 . . . . . . . 8 (cgrGβ€˜πΊ) = (cgrGβ€˜πΊ)
38 simplr 766 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ π‘₯ ∈ 𝑃)
39 symquadlem.6 . . . . . . . . . . 11 (πœ‘ β†’ (𝑋 ∈ (𝐡𝐿𝐷) ∨ 𝐡 = 𝐷))
402, 3, 4, 5, 6, 35, 29, 39colrot2 28079 . . . . . . . . . 10 (πœ‘ β†’ (𝐷 ∈ (𝑋𝐿𝐡) ∨ 𝑋 = 𝐡))
412, 3, 4, 5, 29, 6, 35, 40colcom 28077 . . . . . . . . 9 (πœ‘ β†’ (𝐷 ∈ (𝐡𝐿𝑋) ∨ 𝐡 = 𝑋))
4241ad2antrr 723 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝐷 ∈ (𝐡𝐿𝑋) ∨ 𝐡 = 𝑋))
43 simpr 484 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©)
44 symquadlem.4 . . . . . . . . 9 (πœ‘ β†’ (𝐡 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐴))
4544ad2antrr 723 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝐡 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐴))
46 symquadlem.3 . . . . . . . . . . 11 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
472, 8, 4, 5, 7, 6, 26, 35, 46tgcgrcomlr 27999 . . . . . . . . . 10 (πœ‘ β†’ (𝐡 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐢))
4847ad2antrr 723 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝐡 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐢))
4948eqcomd 2737 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝐷 βˆ’ 𝐢) = (𝐡 βˆ’ 𝐴))
50 symquadlem.2 . . . . . . . . 9 (πœ‘ β†’ 𝐡 β‰  𝐷)
5150ad2antrr 723 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ 𝐡 β‰  𝐷)
522, 3, 4, 24, 34, 36, 30, 37, 36, 34, 8, 27, 38, 28, 42, 43, 45, 49, 51tgfscgr 28087 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝑋 βˆ’ 𝐢) = (π‘₯ βˆ’ 𝐴))
532, 3, 4, 5, 6, 26, 7, 1ncolcom 28080 . . . . . . . . . 10 (πœ‘ β†’ Β¬ (𝐴 ∈ (𝐢𝐿𝐡) ∨ 𝐢 = 𝐡))
5453ad2antrr 723 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ Β¬ (𝐴 ∈ (𝐢𝐿𝐡) ∨ 𝐢 = 𝐡))
5531orcomd 868 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐴 = 𝐢 ∨ 𝑋 ∈ (𝐴𝐿𝐢)))
5655ord 861 . . . . . . . . . . 11 (πœ‘ β†’ (Β¬ 𝐴 = 𝐢 β†’ 𝑋 ∈ (𝐴𝐿𝐢)))
5718, 56mpd 15 . . . . . . . . . 10 (πœ‘ β†’ 𝑋 ∈ (𝐴𝐿𝐢))
5857ad2antrr 723 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ 𝑋 ∈ (𝐴𝐿𝐢))
5918ad2antrr 723 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ Β¬ 𝐴 = 𝐢)
6045eqcomd 2737 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝐷 βˆ’ 𝐴) = (𝐡 βˆ’ 𝐢))
612, 3, 4, 24, 34, 36, 30, 37, 36, 34, 8, 28, 38, 27, 42, 43, 48, 60, 51tgfscgr 28087 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝑋 βˆ’ 𝐴) = (π‘₯ βˆ’ 𝐢))
622, 8, 4, 24, 30, 28, 38, 27, 61tgcgrcomlr 27999 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝐴 βˆ’ 𝑋) = (𝐢 βˆ’ π‘₯))
632, 8, 4, 24, 27, 28axtgcgrrflx 27981 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝐢 βˆ’ 𝐴) = (𝐴 βˆ’ 𝐢))
642, 8, 37, 24, 28, 30, 27, 27, 38, 28, 62, 52, 63trgcgr 28035 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ βŸ¨β€œπ΄π‘‹πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΆπ‘₯π΄β€βŸ©)
652, 3, 4, 24, 28, 30, 27, 37, 27, 38, 28, 32, 64lnxfr 28085 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (π‘₯ ∈ (𝐢𝐿𝐴) ∨ 𝐢 = 𝐴))
662, 3, 4, 24, 27, 28, 38, 65colcom 28077 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (π‘₯ ∈ (𝐴𝐿𝐢) ∨ 𝐴 = 𝐢))
6766orcomd 868 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝐴 = 𝐢 ∨ π‘₯ ∈ (𝐴𝐿𝐢)))
6867ord 861 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (Β¬ 𝐴 = 𝐢 β†’ π‘₯ ∈ (𝐴𝐿𝐢)))
6959, 68mpd 15 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ π‘₯ ∈ (𝐴𝐿𝐢))
7050neneqd 2944 . . . . . . . . . . 11 (πœ‘ β†’ Β¬ 𝐡 = 𝐷)
7139orcomd 868 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐡 = 𝐷 ∨ 𝑋 ∈ (𝐡𝐿𝐷)))
7271ord 861 . . . . . . . . . . 11 (πœ‘ β†’ (Β¬ 𝐡 = 𝐷 β†’ 𝑋 ∈ (𝐡𝐿𝐷)))
7370, 72mpd 15 . . . . . . . . . 10 (πœ‘ β†’ 𝑋 ∈ (𝐡𝐿𝐷))
7473ad2antrr 723 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ 𝑋 ∈ (𝐡𝐿𝐷))
7570ad2antrr 723 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ Β¬ 𝐡 = 𝐷)
7639ad2antrr 723 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝑋 ∈ (𝐡𝐿𝐷) ∨ 𝐡 = 𝐷))
772, 8, 4, 37, 24, 34, 36, 30, 36, 34, 38, 43cgr3swap23 28043 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ βŸ¨β€œπ΅π‘‹π·β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π‘₯π΅β€βŸ©)
782, 3, 4, 24, 34, 30, 36, 37, 36, 38, 34, 76, 77lnxfr 28085 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (π‘₯ ∈ (𝐷𝐿𝐡) ∨ 𝐷 = 𝐡))
792, 3, 4, 24, 36, 34, 38, 78colcom 28077 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (π‘₯ ∈ (𝐡𝐿𝐷) ∨ 𝐡 = 𝐷))
8079orcomd 868 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝐡 = 𝐷 ∨ π‘₯ ∈ (𝐡𝐿𝐷)))
8180ord 861 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (Β¬ 𝐡 = 𝐷 β†’ π‘₯ ∈ (𝐡𝐿𝐷)))
8275, 81mpd 15 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ π‘₯ ∈ (𝐡𝐿𝐷))
832, 4, 3, 24, 28, 27, 34, 36, 54, 58, 69, 74, 82tglineinteq 28164 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ 𝑋 = π‘₯)
8483oveq1d 7427 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝑋 βˆ’ 𝐴) = (π‘₯ βˆ’ 𝐴))
8552, 84eqtr4d 2774 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝑋 βˆ’ 𝐢) = (𝑋 βˆ’ 𝐴))
862, 8, 4, 3, 23, 24, 25, 27, 28, 30, 33, 85colmid 28207 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝐴 = (π‘€β€˜πΆ) ∨ 𝐢 = 𝐴))
8786orcomd 868 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (𝐢 = 𝐴 ∨ 𝐴 = (π‘€β€˜πΆ)))
8887ord 861 . . 3 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ (Β¬ 𝐢 = 𝐴 β†’ 𝐴 = (π‘€β€˜πΆ)))
8922, 88mpd 15 . 2 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©) β†’ 𝐴 = (π‘€β€˜πΆ))
902, 8, 4, 5, 6, 35axtgcgrrflx 27981 . . 3 (πœ‘ β†’ (𝐡 βˆ’ 𝐷) = (𝐷 βˆ’ 𝐡))
912, 3, 4, 5, 6, 35, 29, 37, 35, 6, 8, 41, 90lnext 28086 . 2 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝑃 βŸ¨β€œπ΅π·π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·π΅π‘₯β€βŸ©)
9289, 91r19.29a 3161 1 (πœ‘ β†’ 𝐴 = (π‘€β€˜πΆ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∨ wo 844   = wceq 1540   ∈ wcel 2105   β‰  wne 2939   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  βŸ¨β€œcs3 14798  Basecbs 17149  distcds 17211  TarskiGcstrkg 27946  Itvcitv 27952  LineGclng 27953  cgrGccgrg 28029  pInvGcmir 28171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-oadd 8474  df-er 8707  df-pm 8827  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-dju 9900  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-xnn0 12550  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-hash 14296  df-word 14470  df-concat 14526  df-s1 14551  df-s2 14804  df-s3 14805  df-trkgc 27967  df-trkgb 27968  df-trkgcb 27969  df-trkg 27972  df-cgrg 28030  df-mir 28172
This theorem is referenced by:  opphllem  28254
  Copyright terms: Public domain W3C validator