![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > legid | Structured version Visualization version GIF version |
Description: Reflexivity of the less-than relationship. Proposition 5.7 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
Ref | Expression |
---|---|
legval.p | ⊢ 𝑃 = (Base‘𝐺) |
legval.d | ⊢ − = (dist‘𝐺) |
legval.i | ⊢ 𝐼 = (Itv‘𝐺) |
legval.l | ⊢ ≤ = (≤G‘𝐺) |
legval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
legid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
legid.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
legid | ⊢ (𝜑 → (𝐴 − 𝐵) ≤ (𝐴 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | legid.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
2 | legval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | legval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
4 | legval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | legval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | legid.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 2, 3, 4, 5, 6, 1 | tgbtwntriv2 28513 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐵)) |
8 | eqidd 2741 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐴 − 𝐵)) | |
9 | eleq1 2832 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ (𝐴𝐼𝐵) ↔ 𝐵 ∈ (𝐴𝐼𝐵))) | |
10 | oveq2 7456 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴 − 𝑥) = (𝐴 − 𝐵)) | |
11 | 10 | eqeq2d 2751 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐴 − 𝐵) = (𝐴 − 𝑥) ↔ (𝐴 − 𝐵) = (𝐴 − 𝐵))) |
12 | 9, 11 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 − 𝐵) = (𝐴 − 𝑥)) ↔ (𝐵 ∈ (𝐴𝐼𝐵) ∧ (𝐴 − 𝐵) = (𝐴 − 𝐵)))) |
13 | 12 | rspcev 3635 | . . 3 ⊢ ((𝐵 ∈ 𝑃 ∧ (𝐵 ∈ (𝐴𝐼𝐵) ∧ (𝐴 − 𝐵) = (𝐴 − 𝐵))) → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 − 𝐵) = (𝐴 − 𝑥))) |
14 | 1, 7, 8, 13 | syl12anc 836 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 − 𝐵) = (𝐴 − 𝑥))) |
15 | legval.l | . . 3 ⊢ ≤ = (≤G‘𝐺) | |
16 | 2, 3, 4, 15, 5, 6, 1, 6, 1 | legov 28611 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ (𝐴 − 𝐵) ↔ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 − 𝐵) = (𝐴 − 𝑥)))) |
17 | 14, 16 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ≤ (𝐴 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 distcds 17320 TarskiGcstrkg 28453 Itvcitv 28459 ≤Gcleg 28608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-s2 14897 df-s3 14898 df-trkgc 28474 df-trkgb 28475 df-trkgcb 28476 df-trkg 28479 df-cgrg 28537 df-leg 28609 |
This theorem is referenced by: legtrid 28617 legov3 28624 |
Copyright terms: Public domain | W3C validator |