![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > legid | Structured version Visualization version GIF version |
Description: Reflexivity of the less-than relationship. Proposition 5.7 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
Ref | Expression |
---|---|
legval.p | β’ π = (BaseβπΊ) |
legval.d | β’ β = (distβπΊ) |
legval.i | β’ πΌ = (ItvβπΊ) |
legval.l | β’ β€ = (β€GβπΊ) |
legval.g | β’ (π β πΊ β TarskiG) |
legid.a | β’ (π β π΄ β π) |
legid.b | β’ (π β π΅ β π) |
Ref | Expression |
---|---|
legid | β’ (π β (π΄ β π΅) β€ (π΄ β π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | legid.b | . . 3 β’ (π β π΅ β π) | |
2 | legval.p | . . . 4 β’ π = (BaseβπΊ) | |
3 | legval.d | . . . 4 β’ β = (distβπΊ) | |
4 | legval.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
5 | legval.g | . . . 4 β’ (π β πΊ β TarskiG) | |
6 | legid.a | . . . 4 β’ (π β π΄ β π) | |
7 | 2, 3, 4, 5, 6, 1 | tgbtwntriv2 27776 | . . 3 β’ (π β π΅ β (π΄πΌπ΅)) |
8 | eqidd 2733 | . . 3 β’ (π β (π΄ β π΅) = (π΄ β π΅)) | |
9 | eleq1 2821 | . . . . 5 β’ (π₯ = π΅ β (π₯ β (π΄πΌπ΅) β π΅ β (π΄πΌπ΅))) | |
10 | oveq2 7419 | . . . . . 6 β’ (π₯ = π΅ β (π΄ β π₯) = (π΄ β π΅)) | |
11 | 10 | eqeq2d 2743 | . . . . 5 β’ (π₯ = π΅ β ((π΄ β π΅) = (π΄ β π₯) β (π΄ β π΅) = (π΄ β π΅))) |
12 | 9, 11 | anbi12d 631 | . . . 4 β’ (π₯ = π΅ β ((π₯ β (π΄πΌπ΅) β§ (π΄ β π΅) = (π΄ β π₯)) β (π΅ β (π΄πΌπ΅) β§ (π΄ β π΅) = (π΄ β π΅)))) |
13 | 12 | rspcev 3612 | . . 3 β’ ((π΅ β π β§ (π΅ β (π΄πΌπ΅) β§ (π΄ β π΅) = (π΄ β π΅))) β βπ₯ β π (π₯ β (π΄πΌπ΅) β§ (π΄ β π΅) = (π΄ β π₯))) |
14 | 1, 7, 8, 13 | syl12anc 835 | . 2 β’ (π β βπ₯ β π (π₯ β (π΄πΌπ΅) β§ (π΄ β π΅) = (π΄ β π₯))) |
15 | legval.l | . . 3 β’ β€ = (β€GβπΊ) | |
16 | 2, 3, 4, 15, 5, 6, 1, 6, 1 | legov 27874 | . 2 β’ (π β ((π΄ β π΅) β€ (π΄ β π΅) β βπ₯ β π (π₯ β (π΄πΌπ΅) β§ (π΄ β π΅) = (π΄ β π₯)))) |
17 | 14, 16 | mpbird 256 | 1 β’ (π β (π΄ β π΅) β€ (π΄ β π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 class class class wbr 5148 βcfv 6543 (class class class)co 7411 Basecbs 17146 distcds 17208 TarskiGcstrkg 27716 Itvcitv 27722 β€Gcleg 27871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-er 8705 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277 df-3 12278 df-n0 12475 df-xnn0 12547 df-z 12561 df-uz 12825 df-fz 13487 df-fzo 13630 df-hash 14293 df-word 14467 df-concat 14523 df-s1 14548 df-s2 14801 df-s3 14802 df-trkgc 27737 df-trkgb 27738 df-trkgcb 27739 df-trkg 27742 df-cgrg 27800 df-leg 27872 |
This theorem is referenced by: legtrid 27880 legov3 27887 |
Copyright terms: Public domain | W3C validator |