MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legid Structured version   Visualization version   GIF version

Theorem legid 28490
Description: Reflexivity of the less-than relationship. Proposition 5.7 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
Assertion
Ref Expression
legid (𝜑 → (𝐴 𝐵) (𝐴 𝐵))

Proof of Theorem legid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 legid.b . . 3 (𝜑𝐵𝑃)
2 legval.p . . . 4 𝑃 = (Base‘𝐺)
3 legval.d . . . 4 = (dist‘𝐺)
4 legval.i . . . 4 𝐼 = (Itv‘𝐺)
5 legval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
6 legid.a . . . 4 (𝜑𝐴𝑃)
72, 3, 4, 5, 6, 1tgbtwntriv2 28390 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐵))
8 eqidd 2730 . . 3 (𝜑 → (𝐴 𝐵) = (𝐴 𝐵))
9 eleq1 2816 . . . . 5 (𝑥 = 𝐵 → (𝑥 ∈ (𝐴𝐼𝐵) ↔ 𝐵 ∈ (𝐴𝐼𝐵)))
10 oveq2 7377 . . . . . 6 (𝑥 = 𝐵 → (𝐴 𝑥) = (𝐴 𝐵))
1110eqeq2d 2740 . . . . 5 (𝑥 = 𝐵 → ((𝐴 𝐵) = (𝐴 𝑥) ↔ (𝐴 𝐵) = (𝐴 𝐵)))
129, 11anbi12d 632 . . . 4 (𝑥 = 𝐵 → ((𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝑥)) ↔ (𝐵 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝐵))))
1312rspcev 3585 . . 3 ((𝐵𝑃 ∧ (𝐵 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝐵))) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝑥)))
141, 7, 8, 13syl12anc 836 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝑥)))
15 legval.l . . 3 = (≤G‘𝐺)
162, 3, 4, 15, 5, 6, 1, 6, 1legov 28488 . 2 (𝜑 → ((𝐴 𝐵) (𝐴 𝐵) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝑥))))
1714, 16mpbird 257 1 (𝜑 → (𝐴 𝐵) (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  distcds 17205  TarskiGcstrkg 28330  Itvcitv 28336  ≤Gcleg 28485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790  df-s3 14791  df-trkgc 28351  df-trkgb 28352  df-trkgcb 28353  df-trkg 28356  df-cgrg 28414  df-leg 28486
This theorem is referenced by:  legtrid  28494  legov3  28501
  Copyright terms: Public domain W3C validator