MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legid Structured version   Visualization version   GIF version

Theorem legid 26533
Description: Reflexivity of the less-than relationship. Proposition 5.7 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
Assertion
Ref Expression
legid (𝜑 → (𝐴 𝐵) (𝐴 𝐵))

Proof of Theorem legid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 legid.b . . 3 (𝜑𝐵𝑃)
2 legval.p . . . 4 𝑃 = (Base‘𝐺)
3 legval.d . . . 4 = (dist‘𝐺)
4 legval.i . . . 4 𝐼 = (Itv‘𝐺)
5 legval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
6 legid.a . . . 4 (𝜑𝐴𝑃)
72, 3, 4, 5, 6, 1tgbtwntriv2 26433 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐵))
8 eqidd 2739 . . 3 (𝜑 → (𝐴 𝐵) = (𝐴 𝐵))
9 eleq1 2820 . . . . 5 (𝑥 = 𝐵 → (𝑥 ∈ (𝐴𝐼𝐵) ↔ 𝐵 ∈ (𝐴𝐼𝐵)))
10 oveq2 7178 . . . . . 6 (𝑥 = 𝐵 → (𝐴 𝑥) = (𝐴 𝐵))
1110eqeq2d 2749 . . . . 5 (𝑥 = 𝐵 → ((𝐴 𝐵) = (𝐴 𝑥) ↔ (𝐴 𝐵) = (𝐴 𝐵)))
129, 11anbi12d 634 . . . 4 (𝑥 = 𝐵 → ((𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝑥)) ↔ (𝐵 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝐵))))
1312rspcev 3526 . . 3 ((𝐵𝑃 ∧ (𝐵 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝐵))) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝑥)))
141, 7, 8, 13syl12anc 836 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝑥)))
15 legval.l . . 3 = (≤G‘𝐺)
162, 3, 4, 15, 5, 6, 1, 6, 1legov 26531 . 2 (𝜑 → ((𝐴 𝐵) (𝐴 𝐵) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝑥))))
1714, 16mpbird 260 1 (𝜑 → (𝐴 𝐵) (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wrex 3054   class class class wbr 5030  cfv 6339  (class class class)co 7170  Basecbs 16586  distcds 16677  TarskiGcstrkg 26376  Itvcitv 26382  ≤Gcleg 26528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-oadd 8135  df-er 8320  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-dju 9403  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-xnn0 12049  df-z 12063  df-uz 12325  df-fz 12982  df-fzo 13125  df-hash 13783  df-word 13956  df-concat 14012  df-s1 14039  df-s2 14299  df-s3 14300  df-trkgc 26394  df-trkgb 26395  df-trkgcb 26396  df-trkg 26399  df-cgrg 26457  df-leg 26529
This theorem is referenced by:  legtrid  26537  legov3  26544
  Copyright terms: Public domain W3C validator