MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposexg Structured version   Visualization version   GIF version

Theorem tposexg 8222
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposexg (𝐹𝑉 → tpos 𝐹 ∈ V)

Proof of Theorem tposexg
StepHypRef Expression
1 tposssxp 8212 . 2 tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
2 dmexg 7880 . . . . 5 (𝐹𝑉 → dom 𝐹 ∈ V)
3 cnvexg 7903 . . . . 5 (dom 𝐹 ∈ V → dom 𝐹 ∈ V)
42, 3syl 17 . . . 4 (𝐹𝑉dom 𝐹 ∈ V)
5 p0ex 5342 . . . 4 {∅} ∈ V
6 unexg 7722 . . . 4 ((dom 𝐹 ∈ V ∧ {∅} ∈ V) → (dom 𝐹 ∪ {∅}) ∈ V)
74, 5, 6sylancl 586 . . 3 (𝐹𝑉 → (dom 𝐹 ∪ {∅}) ∈ V)
8 rnexg 7881 . . 3 (𝐹𝑉 → ran 𝐹 ∈ V)
97, 8xpexd 7730 . 2 (𝐹𝑉 → ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V)
10 ssexg 5281 . 2 ((tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∧ ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) → tpos 𝐹 ∈ V)
111, 9, 10sylancr 587 1 (𝐹𝑉 → tpos 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3450  cun 3915  wss 3917  c0 4299  {csn 4592   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  tpos ctpos 8207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-tpos 8208
This theorem is referenced by:  tposex  8242  oftpos  22346  oppf1st2nd  49124
  Copyright terms: Public domain W3C validator