Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tposexg | Structured version Visualization version GIF version |
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposexg | ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposssxp 7927 | . 2 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
2 | dmexg 7636 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
3 | cnvexg 7657 | . . . . 5 ⊢ (dom 𝐹 ∈ V → ◡dom 𝐹 ∈ V) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → ◡dom 𝐹 ∈ V) |
5 | p0ex 5251 | . . . 4 ⊢ {∅} ∈ V | |
6 | unexg 7492 | . . . 4 ⊢ ((◡dom 𝐹 ∈ V ∧ {∅} ∈ V) → (◡dom 𝐹 ∪ {∅}) ∈ V) | |
7 | 4, 5, 6 | sylancl 589 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (◡dom 𝐹 ∪ {∅}) ∈ V) |
8 | rnexg 7637 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
9 | 7, 8 | xpexd 7494 | . 2 ⊢ (𝐹 ∈ 𝑉 → ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) |
10 | ssexg 5191 | . 2 ⊢ ((tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∧ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) → tpos 𝐹 ∈ V) | |
11 | 1, 9, 10 | sylancr 590 | 1 ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 Vcvv 3398 ∪ cun 3841 ⊆ wss 3843 ∅c0 4211 {csn 4516 × cxp 5523 ◡ccnv 5524 dom cdm 5525 ran crn 5526 tpos ctpos 7922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-tpos 7923 |
This theorem is referenced by: tposex 7957 oftpos 21205 |
Copyright terms: Public domain | W3C validator |