![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposexg | Structured version Visualization version GIF version |
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposexg | ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposssxp 8271 | . 2 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
2 | dmexg 7941 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
3 | cnvexg 7964 | . . . . 5 ⊢ (dom 𝐹 ∈ V → ◡dom 𝐹 ∈ V) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → ◡dom 𝐹 ∈ V) |
5 | p0ex 5402 | . . . 4 ⊢ {∅} ∈ V | |
6 | unexg 7778 | . . . 4 ⊢ ((◡dom 𝐹 ∈ V ∧ {∅} ∈ V) → (◡dom 𝐹 ∪ {∅}) ∈ V) | |
7 | 4, 5, 6 | sylancl 585 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (◡dom 𝐹 ∪ {∅}) ∈ V) |
8 | rnexg 7942 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
9 | 7, 8 | xpexd 7786 | . 2 ⊢ (𝐹 ∈ 𝑉 → ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) |
10 | ssexg 5341 | . 2 ⊢ ((tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∧ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) → tpos 𝐹 ∈ V) | |
11 | 1, 9, 10 | sylancr 586 | 1 ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 ∅c0 4352 {csn 4648 × cxp 5698 ◡ccnv 5699 dom cdm 5700 ran crn 5701 tpos ctpos 8266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-tpos 8267 |
This theorem is referenced by: tposex 8301 oftpos 22479 |
Copyright terms: Public domain | W3C validator |