| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposexg | Structured version Visualization version GIF version | ||
| Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposexg | ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposssxp 8209 | . 2 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
| 2 | dmexg 7877 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
| 3 | cnvexg 7900 | . . . . 5 ⊢ (dom 𝐹 ∈ V → ◡dom 𝐹 ∈ V) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → ◡dom 𝐹 ∈ V) |
| 5 | p0ex 5339 | . . . 4 ⊢ {∅} ∈ V | |
| 6 | unexg 7719 | . . . 4 ⊢ ((◡dom 𝐹 ∈ V ∧ {∅} ∈ V) → (◡dom 𝐹 ∪ {∅}) ∈ V) | |
| 7 | 4, 5, 6 | sylancl 586 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (◡dom 𝐹 ∪ {∅}) ∈ V) |
| 8 | rnexg 7878 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
| 9 | 7, 8 | xpexd 7727 | . 2 ⊢ (𝐹 ∈ 𝑉 → ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) |
| 10 | ssexg 5278 | . 2 ⊢ ((tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∧ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) → tpos 𝐹 ∈ V) | |
| 11 | 1, 9, 10 | sylancr 587 | 1 ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 ∅c0 4296 {csn 4589 × cxp 5636 ◡ccnv 5637 dom cdm 5638 ran crn 5639 tpos ctpos 8204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-tpos 8205 |
| This theorem is referenced by: tposex 8239 oftpos 22339 oppf1st2nd 49120 |
| Copyright terms: Public domain | W3C validator |