![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposexg | Structured version Visualization version GIF version |
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposexg | ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposssxp 8210 | . 2 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
2 | dmexg 7889 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
3 | cnvexg 7910 | . . . . 5 ⊢ (dom 𝐹 ∈ V → ◡dom 𝐹 ∈ V) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → ◡dom 𝐹 ∈ V) |
5 | p0ex 5381 | . . . 4 ⊢ {∅} ∈ V | |
6 | unexg 7731 | . . . 4 ⊢ ((◡dom 𝐹 ∈ V ∧ {∅} ∈ V) → (◡dom 𝐹 ∪ {∅}) ∈ V) | |
7 | 4, 5, 6 | sylancl 587 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (◡dom 𝐹 ∪ {∅}) ∈ V) |
8 | rnexg 7890 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
9 | 7, 8 | xpexd 7733 | . 2 ⊢ (𝐹 ∈ 𝑉 → ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) |
10 | ssexg 5322 | . 2 ⊢ ((tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∧ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) → tpos 𝐹 ∈ V) | |
11 | 1, 9, 10 | sylancr 588 | 1 ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3475 ∪ cun 3945 ⊆ wss 3947 ∅c0 4321 {csn 4627 × cxp 5673 ◡ccnv 5674 dom cdm 5675 ran crn 5676 tpos ctpos 8205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-tpos 8206 |
This theorem is referenced by: tposex 8240 oftpos 21936 |
Copyright terms: Public domain | W3C validator |