MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposexg Structured version   Visualization version   GIF version

Theorem tposexg 7937
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposexg (𝐹𝑉 → tpos 𝐹 ∈ V)

Proof of Theorem tposexg
StepHypRef Expression
1 tposssxp 7927 . 2 tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
2 dmexg 7636 . . . . 5 (𝐹𝑉 → dom 𝐹 ∈ V)
3 cnvexg 7657 . . . . 5 (dom 𝐹 ∈ V → dom 𝐹 ∈ V)
42, 3syl 17 . . . 4 (𝐹𝑉dom 𝐹 ∈ V)
5 p0ex 5251 . . . 4 {∅} ∈ V
6 unexg 7492 . . . 4 ((dom 𝐹 ∈ V ∧ {∅} ∈ V) → (dom 𝐹 ∪ {∅}) ∈ V)
74, 5, 6sylancl 589 . . 3 (𝐹𝑉 → (dom 𝐹 ∪ {∅}) ∈ V)
8 rnexg 7637 . . 3 (𝐹𝑉 → ran 𝐹 ∈ V)
97, 8xpexd 7494 . 2 (𝐹𝑉 → ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V)
10 ssexg 5191 . 2 ((tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∧ ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) → tpos 𝐹 ∈ V)
111, 9, 10sylancr 590 1 (𝐹𝑉 → tpos 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  Vcvv 3398  cun 3841  wss 3843  c0 4211  {csn 4516   × cxp 5523  ccnv 5524  dom cdm 5525  ran crn 5526  tpos ctpos 7922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-tpos 7923
This theorem is referenced by:  tposex  7957  oftpos  21205
  Copyright terms: Public domain W3C validator