MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposexg Structured version   Visualization version   GIF version

Theorem tposexg 8027
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposexg (𝐹𝑉 → tpos 𝐹 ∈ V)

Proof of Theorem tposexg
StepHypRef Expression
1 tposssxp 8017 . 2 tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
2 dmexg 7724 . . . . 5 (𝐹𝑉 → dom 𝐹 ∈ V)
3 cnvexg 7745 . . . . 5 (dom 𝐹 ∈ V → dom 𝐹 ∈ V)
42, 3syl 17 . . . 4 (𝐹𝑉dom 𝐹 ∈ V)
5 p0ex 5302 . . . 4 {∅} ∈ V
6 unexg 7577 . . . 4 ((dom 𝐹 ∈ V ∧ {∅} ∈ V) → (dom 𝐹 ∪ {∅}) ∈ V)
74, 5, 6sylancl 585 . . 3 (𝐹𝑉 → (dom 𝐹 ∪ {∅}) ∈ V)
8 rnexg 7725 . . 3 (𝐹𝑉 → ran 𝐹 ∈ V)
97, 8xpexd 7579 . 2 (𝐹𝑉 → ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V)
10 ssexg 5242 . 2 ((tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∧ ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) → tpos 𝐹 ∈ V)
111, 9, 10sylancr 586 1 (𝐹𝑉 → tpos 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3422  cun 3881  wss 3883  c0 4253  {csn 4558   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  tpos ctpos 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-tpos 8013
This theorem is referenced by:  tposex  8047  oftpos  21509
  Copyright terms: Public domain W3C validator