MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsfval Structured version   Visualization version   GIF version

Theorem trlsfval 29456
Description: The set of trails (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
trlsfval (Trailsβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑓)}
Distinct variable group:   𝑓,𝐺,𝑝

Proof of Theorem trlsfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 biidd 262 . 2 (𝑔 = 𝐺 β†’ (Fun ◑𝑓 ↔ Fun ◑𝑓))
2 df-trls 29453 . 2 Trails = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜π‘”)𝑝 ∧ Fun ◑𝑓)})
31, 2fvmptopab 7458 1 (Trailsβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑓)}
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 395   = wceq 1533   class class class wbr 5141  {copab 5203  β—‘ccnv 5668  Fun wfun 6530  β€˜cfv 6536  Walkscwlks 29357  Trailsctrls 29451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-trls 29453
This theorem is referenced by:  istrl  29457  upgrtrls  29462
  Copyright terms: Public domain W3C validator