![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlsfval | Structured version Visualization version GIF version |
Description: The set of trails (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
trlsfval | β’ (TrailsβπΊ) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ Fun β‘π)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 261 | . 2 β’ (π = πΊ β (Fun β‘π β Fun β‘π)) | |
2 | df-trls 28946 | . 2 β’ Trails = (π β V β¦ {β¨π, πβ© β£ (π(Walksβπ)π β§ Fun β‘π)}) | |
3 | 1, 2 | fvmptopab 7462 | 1 β’ (TrailsβπΊ) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ Fun β‘π)} |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 396 = wceq 1541 class class class wbr 5148 {copab 5210 β‘ccnv 5675 Fun wfun 6537 βcfv 6543 Walkscwlks 28850 Trailsctrls 28944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-trls 28946 |
This theorem is referenced by: istrl 28950 upgrtrls 28955 |
Copyright terms: Public domain | W3C validator |