MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsfval Structured version   Visualization version   GIF version

Theorem trlsfval 29731
Description: The set of trails (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
trlsfval (Trails‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑓)}
Distinct variable group:   𝑓,𝐺,𝑝

Proof of Theorem trlsfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 biidd 262 . 2 (𝑔 = 𝐺 → (Fun 𝑓 ↔ Fun 𝑓))
2 df-trls 29728 . 2 Trails = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ Fun 𝑓)})
31, 2fvmptopab 7504 1 (Trails‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑓)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537   class class class wbr 5166  {copab 5228  ccnv 5699  Fun wfun 6567  cfv 6573  Walkscwlks 29632  Trailsctrls 29726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-trls 29728
This theorem is referenced by:  istrl  29732  upgrtrls  29737
  Copyright terms: Public domain W3C validator