MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrl Structured version   Visualization version   GIF version

Theorem istrl 29681
Description: Conditions for a pair of classes/functions to be a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
istrl (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))

Proof of Theorem istrl
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trlsfval 29680 . 2 (Trails‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑓)}
2 cnveq 5858 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
32funeqd 6563 . . 3 (𝑓 = 𝐹 → (Fun 𝑓 ↔ Fun 𝐹))
43adantr 480 . 2 ((𝑓 = 𝐹𝑝 = 𝑃) → (Fun 𝑓 ↔ Fun 𝐹))
5 relwlk 29611 . 2 Rel (Walks‘𝐺)
61, 4, 5brfvopabrbr 6988 1 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   class class class wbr 5124  ccnv 5658  Fun wfun 6530  cfv 6536  Walkscwlks 29581  Trailsctrls 29675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-wlks 29584  df-trls 29677
This theorem is referenced by:  trliswlk  29682  trlf1  29683  trlres  29685  upgristrl  29687  dfpth2  29716  2pthnloop  29718  upgrspthswlk  29725  uhgrwkspth  29742  usgr2wlkspth  29746  uspgrn2crct  29795  crctcshtrl  29810  2trld  29925  0trl  30108  1trld  30128  ntrl2v2e  30144  3trld  30158  iseupthf1o  30188  subgrtrl  35160  upgrimtrls  47886  gpgprismgr4cycllem11  48071
  Copyright terms: Public domain W3C validator