| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istrl | Structured version Visualization version GIF version | ||
| Description: Conditions for a pair of classes/functions to be a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.) |
| Ref | Expression |
|---|---|
| istrl | ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsfval 29630 | . 2 ⊢ (Trails‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑓)} | |
| 2 | cnveq 5840 | . . . 4 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
| 3 | 2 | funeqd 6541 | . . 3 ⊢ (𝑓 = 𝐹 → (Fun ◡𝑓 ↔ Fun ◡𝐹)) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (Fun ◡𝑓 ↔ Fun ◡𝐹)) |
| 5 | relwlk 29561 | . 2 ⊢ Rel (Walks‘𝐺) | |
| 6 | 1, 4, 5 | brfvopabrbr 6968 | 1 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5110 ◡ccnv 5640 Fun wfun 6508 ‘cfv 6514 Walkscwlks 29531 Trailsctrls 29625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-wlks 29534 df-trls 29627 |
| This theorem is referenced by: trliswlk 29632 trlf1 29633 trlres 29635 upgristrl 29637 dfpth2 29666 2pthnloop 29668 upgrspthswlk 29675 uhgrwkspth 29692 usgr2wlkspth 29696 uspgrn2crct 29745 crctcshtrl 29760 2trld 29875 0trl 30058 1trld 30078 ntrl2v2e 30094 3trld 30108 iseupthf1o 30138 subgrtrl 35127 upgrimtrls 47910 gpgprismgr4cycllem11 48099 |
| Copyright terms: Public domain | W3C validator |