MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrl Structured version   Visualization version   GIF version

Theorem istrl 29732
Description: Conditions for a pair of classes/functions to be a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
istrl (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))

Proof of Theorem istrl
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trlsfval 29731 . 2 (Trails‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑓)}
2 cnveq 5898 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
32funeqd 6600 . . 3 (𝑓 = 𝐹 → (Fun 𝑓 ↔ Fun 𝐹))
43adantr 480 . 2 ((𝑓 = 𝐹𝑝 = 𝑃) → (Fun 𝑓 ↔ Fun 𝐹))
5 relwlk 29662 . 2 Rel (Walks‘𝐺)
61, 4, 5brfvopabrbr 7026 1 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537   class class class wbr 5166  ccnv 5699  Fun wfun 6567  cfv 6573  Walkscwlks 29632  Trailsctrls 29726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-wlks 29635  df-trls 29728
This theorem is referenced by:  trliswlk  29733  trlf1  29734  trlres  29736  upgristrl  29738  2pthnloop  29767  upgrspthswlk  29774  uhgrwkspth  29791  usgr2wlkspth  29795  uspgrn2crct  29841  crctcshtrl  29856  2trld  29971  0trl  30154  1trld  30174  ntrl2v2e  30190  3trld  30204  iseupthf1o  30234  subgrtrl  35101
  Copyright terms: Public domain W3C validator