MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrl Structured version   Visualization version   GIF version

Theorem istrl 29715
Description: Conditions for a pair of classes/functions to be a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
istrl (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))

Proof of Theorem istrl
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trlsfval 29714 . 2 (Trails‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑓)}
2 cnveq 5883 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
32funeqd 6587 . . 3 (𝑓 = 𝐹 → (Fun 𝑓 ↔ Fun 𝐹))
43adantr 480 . 2 ((𝑓 = 𝐹𝑝 = 𝑃) → (Fun 𝑓 ↔ Fun 𝐹))
5 relwlk 29645 . 2 Rel (Walks‘𝐺)
61, 4, 5brfvopabrbr 7012 1 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539   class class class wbr 5142  ccnv 5683  Fun wfun 6554  cfv 6560  Walkscwlks 29615  Trailsctrls 29709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fv 6568  df-wlks 29618  df-trls 29711
This theorem is referenced by:  trliswlk  29716  trlf1  29717  trlres  29719  upgristrl  29721  dfpth2  29750  2pthnloop  29752  upgrspthswlk  29759  uhgrwkspth  29776  usgr2wlkspth  29780  uspgrn2crct  29829  crctcshtrl  29844  2trld  29959  0trl  30142  1trld  30162  ntrl2v2e  30178  3trld  30192  iseupthf1o  30222  subgrtrl  35139
  Copyright terms: Public domain W3C validator