| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istrl | Structured version Visualization version GIF version | ||
| Description: Conditions for a pair of classes/functions to be a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.) |
| Ref | Expression |
|---|---|
| istrl | ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsfval 29607 | . 2 ⊢ (Trails‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑓)} | |
| 2 | cnveq 5850 | . . . 4 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
| 3 | 2 | funeqd 6554 | . . 3 ⊢ (𝑓 = 𝐹 → (Fun ◡𝑓 ↔ Fun ◡𝐹)) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (Fun ◡𝑓 ↔ Fun ◡𝐹)) |
| 5 | relwlk 29538 | . 2 ⊢ Rel (Walks‘𝐺) | |
| 6 | 1, 4, 5 | brfvopabrbr 6979 | 1 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 class class class wbr 5116 ◡ccnv 5650 Fun wfun 6521 ‘cfv 6527 Walkscwlks 29508 Trailsctrls 29602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fv 6535 df-wlks 29511 df-trls 29604 |
| This theorem is referenced by: trliswlk 29609 trlf1 29610 trlres 29612 upgristrl 29614 dfpth2 29643 2pthnloop 29645 upgrspthswlk 29652 uhgrwkspth 29669 usgr2wlkspth 29673 uspgrn2crct 29722 crctcshtrl 29737 2trld 29852 0trl 30035 1trld 30055 ntrl2v2e 30071 3trld 30085 iseupthf1o 30115 subgrtrl 35076 |
| Copyright terms: Public domain | W3C validator |