Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istrl | Structured version Visualization version GIF version |
Description: Conditions for a pair of classes/functions to be a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
istrl | ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsfval 28108 | . 2 ⊢ (Trails‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑓)} | |
2 | cnveq 5795 | . . . 4 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
3 | 2 | funeqd 6485 | . . 3 ⊢ (𝑓 = 𝐹 → (Fun ◡𝑓 ↔ Fun ◡𝐹)) |
4 | 3 | adantr 482 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (Fun ◡𝑓 ↔ Fun ◡𝐹)) |
5 | relwlk 28038 | . 2 ⊢ Rel (Walks‘𝐺) | |
6 | 1, 4, 5 | brfvopabrbr 6904 | 1 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 class class class wbr 5081 ◡ccnv 5599 Fun wfun 6452 ‘cfv 6458 Walkscwlks 28008 Trailsctrls 28103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fv 6466 df-wlks 28011 df-trls 28105 |
This theorem is referenced by: trliswlk 28110 trlf1 28111 trlres 28113 upgristrl 28115 2pthnloop 28144 upgrspthswlk 28151 uhgrwkspth 28168 usgr2wlkspth 28172 uspgrn2crct 28218 crctcshtrl 28233 2trld 28348 0trl 28531 1trld 28551 ntrl2v2e 28567 3trld 28581 iseupthf1o 28611 subgrtrl 33140 |
Copyright terms: Public domain | W3C validator |