MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrl Structured version   Visualization version   GIF version

Theorem istrl 29674
Description: Conditions for a pair of classes/functions to be a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
istrl (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))

Proof of Theorem istrl
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trlsfval 29673 . 2 (Trails‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑓)}
2 cnveq 5813 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
32funeqd 6503 . . 3 (𝑓 = 𝐹 → (Fun 𝑓 ↔ Fun 𝐹))
43adantr 480 . 2 ((𝑓 = 𝐹𝑝 = 𝑃) → (Fun 𝑓 ↔ Fun 𝐹))
5 relwlk 29605 . 2 Rel (Walks‘𝐺)
61, 4, 5brfvopabrbr 6926 1 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541   class class class wbr 5091  ccnv 5615  Fun wfun 6475  cfv 6481  Walkscwlks 29576  Trailsctrls 29668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-wlks 29579  df-trls 29670
This theorem is referenced by:  trliswlk  29675  trlf1  29676  trlres  29678  upgristrl  29680  dfpth2  29708  2pthnloop  29710  upgrspthswlk  29717  uhgrwkspth  29734  usgr2wlkspth  29738  uspgrn2crct  29787  crctcshtrl  29802  2trld  29917  0trl  30100  1trld  30120  ntrl2v2e  30136  3trld  30150  iseupthf1o  30180  subgrtrl  35175  upgrimtrls  47943  gpgprismgr4cycllem11  48142
  Copyright terms: Public domain W3C validator