![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istrl | Structured version Visualization version GIF version |
Description: Conditions for a pair of classes/functions to be a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
istrl | β’ (πΉ(TrailsβπΊ)π β (πΉ(WalksβπΊ)π β§ Fun β‘πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsfval 28941 | . 2 β’ (TrailsβπΊ) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ Fun β‘π)} | |
2 | cnveq 5871 | . . . 4 β’ (π = πΉ β β‘π = β‘πΉ) | |
3 | 2 | funeqd 6567 | . . 3 β’ (π = πΉ β (Fun β‘π β Fun β‘πΉ)) |
4 | 3 | adantr 481 | . 2 β’ ((π = πΉ β§ π = π) β (Fun β‘π β Fun β‘πΉ)) |
5 | relwlk 28872 | . 2 β’ Rel (WalksβπΊ) | |
6 | 1, 4, 5 | brfvopabrbr 6992 | 1 β’ (πΉ(TrailsβπΊ)π β (πΉ(WalksβπΊ)π β§ Fun β‘πΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 = wceq 1541 class class class wbr 5147 β‘ccnv 5674 Fun wfun 6534 βcfv 6540 Walkscwlks 28842 Trailsctrls 28936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fv 6548 df-wlks 28845 df-trls 28938 |
This theorem is referenced by: trliswlk 28943 trlf1 28944 trlres 28946 upgristrl 28948 2pthnloop 28977 upgrspthswlk 28984 uhgrwkspth 29001 usgr2wlkspth 29005 uspgrn2crct 29051 crctcshtrl 29066 2trld 29181 0trl 29364 1trld 29384 ntrl2v2e 29400 3trld 29414 iseupthf1o 29444 subgrtrl 34112 |
Copyright terms: Public domain | W3C validator |