![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reltrls | Structured version Visualization version GIF version |
Description: The set (Trails‘𝐺) of all trails on 𝐺 is a set of pairs by our definition of a trail, and so is a relation. (Contributed by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
reltrls | ⊢ Rel (Trails‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-trls 26994 | . 2 ⊢ Trails = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ Fun ◡𝑓)}) | |
2 | 1 | relmptopab 7144 | 1 ⊢ Rel (Trails‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 Vcvv 3415 class class class wbr 4874 ◡ccnv 5342 Rel wrel 5348 Fun wfun 6118 ‘cfv 6124 Walkscwlks 26895 Trailsctrls 26992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fv 6132 df-trls 26994 |
This theorem is referenced by: ispth 27026 isspth 27027 iscrct 27093 iseupth 27578 |
Copyright terms: Public domain | W3C validator |