Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reltrls | Structured version Visualization version GIF version |
Description: The set (Trails‘𝐺) of all trails on 𝐺 is a set of pairs by our definition of a trail, and so is a relation. (Contributed by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
reltrls | ⊢ Rel (Trails‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-trls 27962 | . 2 ⊢ Trails = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ Fun ◡𝑓)}) | |
2 | 1 | relmptopab 7497 | 1 ⊢ Rel (Trails‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 Vcvv 3422 class class class wbr 5070 ◡ccnv 5579 Rel wrel 5585 Fun wfun 6412 ‘cfv 6418 Walkscwlks 27866 Trailsctrls 27960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-trls 27962 |
This theorem is referenced by: ispth 27992 isspth 27993 iscrct 28059 iseupth 28466 |
Copyright terms: Public domain | W3C validator |