MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reltrls Structured version   Visualization version   GIF version

Theorem reltrls 27475
Description: The set (Trails‘𝐺) of all trails on 𝐺 is a set of pairs by our definition of a trail, and so is a relation. (Contributed by AV, 29-Oct-2021.)
Assertion
Ref Expression
reltrls Rel (Trails‘𝐺)

Proof of Theorem reltrls
Dummy variables 𝑓 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trls 27473 . 2 Trails = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ Fun 𝑓)})
21relmptopab 7394 1 Rel (Trails‘𝐺)
Colors of variables: wff setvar class
Syntax hints:  wa 398  Vcvv 3494   class class class wbr 5065  ccnv 5553  Rel wrel 5559  Fun wfun 6348  cfv 6354  Walkscwlks 27377  Trailsctrls 27471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fv 6362  df-trls 27473
This theorem is referenced by:  ispth  27503  isspth  27504  iscrct  27570  iseupth  27979
  Copyright terms: Public domain W3C validator