MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrn0 Structured version   Visualization version   GIF version

Theorem uhgrn0 28307
Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.)
Hypothesis
Ref Expression
uhgrfun.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrn0 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)

Proof of Theorem uhgrn0
StepHypRef Expression
1 eqid 2733 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
2 uhgrfun.e . . . . . . 7 𝐸 = (iEdg‘𝐺)
31, 2uhgrf 28302 . . . . . 6 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
4 fndm 6649 . . . . . . 7 (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴)
54feq2d 6700 . . . . . 6 (𝐸 Fn 𝐴 → (𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
63, 5syl5ibcom 244 . . . . 5 (𝐺 ∈ UHGraph → (𝐸 Fn 𝐴𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
76imp 408 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
87ffvelcdmda 7082 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹𝐴) → (𝐸𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
983impa 1111 . 2 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
10 eldifsni 4792 . 2 ((𝐸𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (𝐸𝐹) ≠ ∅)
119, 10syl 17 1 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  cdif 3944  c0 4321  𝒫 cpw 4601  {csn 4627  dom cdm 5675   Fn wfn 6535  wf 6536  cfv 6540  Vtxcvtx 28236  iEdgciedg 28237  UHGraphcuhgr 28296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-uhgr 28298
This theorem is referenced by:  lpvtx  28308  subgruhgredgd  28521
  Copyright terms: Public domain W3C validator