MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrn0 Structured version   Visualization version   GIF version

Theorem uhgrn0 29102
Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.)
Hypothesis
Ref Expression
uhgrfun.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrn0 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)

Proof of Theorem uhgrn0
StepHypRef Expression
1 eqid 2740 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
2 uhgrfun.e . . . . . . 7 𝐸 = (iEdg‘𝐺)
31, 2uhgrf 29097 . . . . . 6 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
4 fndm 6682 . . . . . . 7 (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴)
54feq2d 6733 . . . . . 6 (𝐸 Fn 𝐴 → (𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
63, 5syl5ibcom 245 . . . . 5 (𝐺 ∈ UHGraph → (𝐸 Fn 𝐴𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
76imp 406 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
87ffvelcdmda 7118 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹𝐴) → (𝐸𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
983impa 1110 . 2 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
10 eldifsni 4815 . 2 ((𝐸𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (𝐸𝐹) ≠ ∅)
119, 10syl 17 1 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973  c0 4352  𝒫 cpw 4622  {csn 4648  dom cdm 5700   Fn wfn 6568  wf 6569  cfv 6573  Vtxcvtx 29031  iEdgciedg 29032  UHGraphcuhgr 29091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-uhgr 29093
This theorem is referenced by:  lpvtx  29103  subgruhgredgd  29319
  Copyright terms: Public domain W3C validator