Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgrn0 | Structured version Visualization version GIF version |
Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.) |
Ref | Expression |
---|---|
uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrn0 | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | uhgrfun.e | . . . . . . 7 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 27432 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | fndm 6536 | . . . . . . 7 ⊢ (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴) | |
5 | 4 | feq2d 6586 | . . . . . 6 ⊢ (𝐸 Fn 𝐴 → (𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
6 | 3, 5 | syl5ibcom 244 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (𝐸 Fn 𝐴 → 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
7 | 6 | imp 407 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
8 | 7 | ffvelrnda 6961 | . . 3 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
9 | 8 | 3impa 1109 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
10 | eldifsni 4723 | . 2 ⊢ ((𝐸‘𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (𝐸‘𝐹) ≠ ∅) | |
11 | 9, 10 | syl 17 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 ∅c0 4256 𝒫 cpw 4533 {csn 4561 dom cdm 5589 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 Vtxcvtx 27366 iEdgciedg 27367 UHGraphcuhgr 27426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-uhgr 27428 |
This theorem is referenced by: lpvtx 27438 subgruhgredgd 27651 |
Copyright terms: Public domain | W3C validator |