|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > uhgrn0 | Structured version Visualization version GIF version | ||
| Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.) | 
| Ref | Expression | 
|---|---|
| uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) | 
| Ref | Expression | 
|---|---|
| uhgrn0 | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | uhgrfun.e | . . . . . . 7 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | uhgrf 29080 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) | 
| 4 | fndm 6670 | . . . . . . 7 ⊢ (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴) | |
| 5 | 4 | feq2d 6721 | . . . . . 6 ⊢ (𝐸 Fn 𝐴 → (𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) | 
| 6 | 3, 5 | syl5ibcom 245 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (𝐸 Fn 𝐴 → 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) | 
| 7 | 6 | imp 406 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) | 
| 8 | 7 | ffvelcdmda 7103 | . . 3 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) | 
| 9 | 8 | 3impa 1109 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) | 
| 10 | eldifsni 4789 | . 2 ⊢ ((𝐸‘𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (𝐸‘𝐹) ≠ ∅) | |
| 11 | 9, 10 | syl 17 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∖ cdif 3947 ∅c0 4332 𝒫 cpw 4599 {csn 4625 dom cdm 5684 Fn wfn 6555 ⟶wf 6556 ‘cfv 6560 Vtxcvtx 29014 iEdgciedg 29015 UHGraphcuhgr 29074 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-uhgr 29076 | 
| This theorem is referenced by: lpvtx 29086 subgruhgredgd 29302 | 
| Copyright terms: Public domain | W3C validator |