![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrn0 | Structured version Visualization version GIF version |
Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.) |
Ref | Expression |
---|---|
uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrn0 | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | uhgrfun.e | . . . . . . 7 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 28816 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | fndm 6643 | . . . . . . 7 ⊢ (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴) | |
5 | 4 | feq2d 6694 | . . . . . 6 ⊢ (𝐸 Fn 𝐴 → (𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
6 | 3, 5 | syl5ibcom 244 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (𝐸 Fn 𝐴 → 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
7 | 6 | imp 406 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
8 | 7 | ffvelcdmda 7077 | . . 3 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
9 | 8 | 3impa 1107 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
10 | eldifsni 4786 | . 2 ⊢ ((𝐸‘𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (𝐸‘𝐹) ≠ ∅) | |
11 | 9, 10 | syl 17 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∖ cdif 3938 ∅c0 4315 𝒫 cpw 4595 {csn 4621 dom cdm 5667 Fn wfn 6529 ⟶wf 6530 ‘cfv 6534 Vtxcvtx 28750 iEdgciedg 28751 UHGraphcuhgr 28810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fv 6542 df-uhgr 28812 |
This theorem is referenced by: lpvtx 28822 subgruhgredgd 29035 |
Copyright terms: Public domain | W3C validator |