MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrn0 Structured version   Visualization version   GIF version

Theorem uhgrn0 29046
Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.)
Hypothesis
Ref Expression
uhgrfun.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrn0 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)

Proof of Theorem uhgrn0
StepHypRef Expression
1 eqid 2731 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
2 uhgrfun.e . . . . . . 7 𝐸 = (iEdg‘𝐺)
31, 2uhgrf 29041 . . . . . 6 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
4 fndm 6584 . . . . . . 7 (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴)
54feq2d 6635 . . . . . 6 (𝐸 Fn 𝐴 → (𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
63, 5syl5ibcom 245 . . . . 5 (𝐺 ∈ UHGraph → (𝐸 Fn 𝐴𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
76imp 406 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
87ffvelcdmda 7017 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹𝐴) → (𝐸𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
983impa 1109 . 2 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
10 eldifsni 4742 . 2 ((𝐸𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (𝐸𝐹) ≠ ∅)
119, 10syl 17 1 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cdif 3899  c0 4283  𝒫 cpw 4550  {csn 4576  dom cdm 5616   Fn wfn 6476  wf 6477  cfv 6481  Vtxcvtx 28975  iEdgciedg 28976  UHGraphcuhgr 29035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-uhgr 29037
This theorem is referenced by:  lpvtx  29047  subgruhgredgd  29263
  Copyright terms: Public domain W3C validator