![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrn0 | Structured version Visualization version GIF version |
Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.) |
Ref | Expression |
---|---|
uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrn0 | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | uhgrfun.e | . . . . . . 7 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 28302 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | fndm 6649 | . . . . . . 7 ⊢ (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴) | |
5 | 4 | feq2d 6700 | . . . . . 6 ⊢ (𝐸 Fn 𝐴 → (𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
6 | 3, 5 | syl5ibcom 244 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (𝐸 Fn 𝐴 → 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
7 | 6 | imp 408 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
8 | 7 | ffvelcdmda 7082 | . . 3 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
9 | 8 | 3impa 1111 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
10 | eldifsni 4792 | . 2 ⊢ ((𝐸‘𝐹) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (𝐸‘𝐹) ≠ ∅) | |
11 | 9, 10 | syl 17 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∖ cdif 3944 ∅c0 4321 𝒫 cpw 4601 {csn 4627 dom cdm 5675 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 Vtxcvtx 28236 iEdgciedg 28237 UHGraphcuhgr 28296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-uhgr 28298 |
This theorem is referenced by: lpvtx 28308 subgruhgredgd 28521 |
Copyright terms: Public domain | W3C validator |