MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrun Structured version   Visualization version   GIF version

Theorem uhgrun 27444
Description: The union 𝑈 of two (undirected) hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a hypergraph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
uhgrun.g (𝜑𝐺 ∈ UHGraph)
uhgrun.h (𝜑𝐻 ∈ UHGraph)
uhgrun.e 𝐸 = (iEdg‘𝐺)
uhgrun.f 𝐹 = (iEdg‘𝐻)
uhgrun.vg 𝑉 = (Vtx‘𝐺)
uhgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
uhgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
uhgrun.u (𝜑𝑈𝑊)
uhgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
uhgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
uhgrun (𝜑𝑈 ∈ UHGraph)

Proof of Theorem uhgrun
StepHypRef Expression
1 uhgrun.g . . . . 5 (𝜑𝐺 ∈ UHGraph)
2 uhgrun.vg . . . . . 6 𝑉 = (Vtx‘𝐺)
3 uhgrun.e . . . . . 6 𝐸 = (iEdg‘𝐺)
42, 3uhgrf 27432 . . . . 5 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
51, 4syl 17 . . . 4 (𝜑𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
6 uhgrun.h . . . . . 6 (𝜑𝐻 ∈ UHGraph)
7 eqid 2738 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
8 uhgrun.f . . . . . . 7 𝐹 = (iEdg‘𝐻)
97, 8uhgrf 27432 . . . . . 6 (𝐻 ∈ UHGraph → 𝐹:dom 𝐹⟶(𝒫 (Vtx‘𝐻) ∖ {∅}))
106, 9syl 17 . . . . 5 (𝜑𝐹:dom 𝐹⟶(𝒫 (Vtx‘𝐻) ∖ {∅}))
11 uhgrun.vh . . . . . . . . 9 (𝜑 → (Vtx‘𝐻) = 𝑉)
1211eqcomd 2744 . . . . . . . 8 (𝜑𝑉 = (Vtx‘𝐻))
1312pweqd 4552 . . . . . . 7 (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻))
1413difeq1d 4056 . . . . . 6 (𝜑 → (𝒫 𝑉 ∖ {∅}) = (𝒫 (Vtx‘𝐻) ∖ {∅}))
1514feq3d 6587 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶(𝒫 𝑉 ∖ {∅}) ↔ 𝐹:dom 𝐹⟶(𝒫 (Vtx‘𝐻) ∖ {∅})))
1610, 15mpbird 256 . . . 4 (𝜑𝐹:dom 𝐹⟶(𝒫 𝑉 ∖ {∅}))
17 uhgrun.i . . . 4 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
185, 16, 17fun2d 6638 . . 3 (𝜑 → (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶(𝒫 𝑉 ∖ {∅}))
19 uhgrun.un . . . 4 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
2019dmeqd 5814 . . . . 5 (𝜑 → dom (iEdg‘𝑈) = dom (𝐸𝐹))
21 dmun 5819 . . . . 5 dom (𝐸𝐹) = (dom 𝐸 ∪ dom 𝐹)
2220, 21eqtrdi 2794 . . . 4 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹))
23 uhgrun.v . . . . . 6 (𝜑 → (Vtx‘𝑈) = 𝑉)
2423pweqd 4552 . . . . 5 (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉)
2524difeq1d 4056 . . . 4 (𝜑 → (𝒫 (Vtx‘𝑈) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
2619, 22, 25feq123d 6589 . . 3 (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶(𝒫 (Vtx‘𝑈) ∖ {∅}) ↔ (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶(𝒫 𝑉 ∖ {∅})))
2718, 26mpbird 256 . 2 (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶(𝒫 (Vtx‘𝑈) ∖ {∅}))
28 uhgrun.u . . 3 (𝜑𝑈𝑊)
29 eqid 2738 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
30 eqid 2738 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
3129, 30isuhgr 27430 . . 3 (𝑈𝑊 → (𝑈 ∈ UHGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶(𝒫 (Vtx‘𝑈) ∖ {∅})))
3228, 31syl 17 . 2 (𝜑 → (𝑈 ∈ UHGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶(𝒫 (Vtx‘𝑈) ∖ {∅})))
3327, 32mpbird 256 1 (𝜑𝑈 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  cdif 3884  cun 3885  cin 3886  c0 4256  𝒫 cpw 4533  {csn 4561  dom cdm 5589  wf 6429  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367  UHGraphcuhgr 27426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-uhgr 27428
This theorem is referenced by:  uhgrunop  27445  ushgrun  27446
  Copyright terms: Public domain W3C validator