![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgredgn0 | Structured version Visualization version GIF version |
Description: An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020.) |
Ref | Expression |
---|---|
uhgredgn0 | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 28174 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | eqid 2731 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2731 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
4 | 2, 3 | uhgrf 28187 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
5 | 4 | frnd 6712 | . . 3 ⊢ (𝐺 ∈ UHGraph → ran (iEdg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
6 | 1, 5 | eqsstrid 4026 | . 2 ⊢ (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
7 | 6 | sselda 3978 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∖ cdif 3941 ∅c0 4318 𝒫 cpw 4596 {csn 4622 dom cdm 5669 ran crn 5670 ‘cfv 6532 Vtxcvtx 28121 iEdgciedg 28122 Edgcedg 28172 UHGraphcuhgr 28181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-fv 6540 df-edg 28173 df-uhgr 28183 |
This theorem is referenced by: edguhgr 28254 uhgredgss 28256 uhgrvd00 28656 lfuhgr2 33940 loop1cycl 33959 |
Copyright terms: Public domain | W3C validator |