![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgredgn0 | Structured version Visualization version GIF version |
Description: An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020.) |
Ref | Expression |
---|---|
uhgredgn0 | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 26284 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | eqid 2799 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2799 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
4 | 2, 3 | uhgrf 26297 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
5 | 4 | frnd 6263 | . . 3 ⊢ (𝐺 ∈ UHGraph → ran (iEdg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
6 | 1, 5 | syl5eqss 3845 | . 2 ⊢ (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
7 | 6 | sselda 3798 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 ∖ cdif 3766 ∅c0 4115 𝒫 cpw 4349 {csn 4368 dom cdm 5312 ran crn 5313 ‘cfv 6101 Vtxcvtx 26231 iEdgciedg 26232 Edgcedg 26282 UHGraphcuhgr 26291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-edg 26283 df-uhgr 26293 |
This theorem is referenced by: edguhgr 26364 uhgredgss 26366 uhgrvd00 26784 |
Copyright terms: Public domain | W3C validator |