| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgredgn0 | Structured version Visualization version GIF version | ||
| Description: An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgredgn0 | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval 29048 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 2 | eqid 2733 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 3 | eqid 2733 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 4 | 2, 3 | uhgrf 29061 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 5 | 4 | frnd 6667 | . . 3 ⊢ (𝐺 ∈ UHGraph → ran (iEdg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 6 | 1, 5 | eqsstrid 3969 | . 2 ⊢ (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 7 | 6 | sselda 3930 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∖ cdif 3895 ∅c0 4282 𝒫 cpw 4551 {csn 4577 dom cdm 5621 ran crn 5622 ‘cfv 6489 Vtxcvtx 28995 iEdgciedg 28996 Edgcedg 29046 UHGraphcuhgr 29055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-edg 29047 df-uhgr 29057 |
| This theorem is referenced by: edguhgr 29128 uhgredgss 29130 uhgrvd00 29534 lfuhgr2 35235 loop1cycl 35253 |
| Copyright terms: Public domain | W3C validator |