| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgredgn0 | Structured version Visualization version GIF version | ||
| Description: An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgredgn0 | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval 29033 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 4 | 2, 3 | uhgrf 29046 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 5 | 4 | frnd 6719 | . . 3 ⊢ (𝐺 ∈ UHGraph → ran (iEdg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 6 | 1, 5 | eqsstrid 4002 | . 2 ⊢ (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 7 | 6 | sselda 3963 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3928 ∅c0 4313 𝒫 cpw 4580 {csn 4606 dom cdm 5659 ran crn 5660 ‘cfv 6536 Vtxcvtx 28980 iEdgciedg 28981 Edgcedg 29031 UHGraphcuhgr 29040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-edg 29032 df-uhgr 29042 |
| This theorem is referenced by: edguhgr 29113 uhgredgss 29115 uhgrvd00 29519 lfuhgr2 35146 loop1cycl 35164 |
| Copyright terms: Public domain | W3C validator |