MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgredgn0 Structured version   Visualization version   GIF version

Theorem uhgredgn0 29163
Description: An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020.)
Assertion
Ref Expression
uhgredgn0 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))

Proof of Theorem uhgredgn0
StepHypRef Expression
1 edgval 29084 . . 3 (Edg‘𝐺) = ran (iEdg‘𝐺)
2 eqid 2740 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2740 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3uhgrf 29097 . . . 4 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
54frnd 6755 . . 3 (𝐺 ∈ UHGraph → ran (iEdg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))
61, 5eqsstrid 4057 . 2 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))
76sselda 4008 1 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cdif 3973  c0 4352  𝒫 cpw 4622  {csn 4648  dom cdm 5700  ran crn 5701  cfv 6573  Vtxcvtx 29031  iEdgciedg 29032  Edgcedg 29082  UHGraphcuhgr 29091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-edg 29083  df-uhgr 29093
This theorem is referenced by:  edguhgr  29164  uhgredgss  29166  uhgrvd00  29570  lfuhgr2  35086  loop1cycl  35105  uspgrimprop  47757
  Copyright terms: Public domain W3C validator