| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgr0e | Structured version Visualization version GIF version | ||
| Description: The empty graph, with vertices but no edges, is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| umgr0e.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| umgr0e.e | ⊢ (𝜑 → (iEdg‘𝐺) = ∅) |
| Ref | Expression |
|---|---|
| upgr0e | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgr0e.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 2 | umgr0e.e | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = ∅) | |
| 3 | 1, 2 | umgr0e 29037 | . 2 ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
| 4 | umgrupgr 29030 | . 2 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4296 ‘cfv 6511 iEdgciedg 28924 UPGraphcupgr 29007 UMGraphcumgr 29008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-2 12249 df-upgr 29009 df-umgr 29010 |
| This theorem is referenced by: upgr0eop 29041 upgr0eopALT 29043 |
| Copyright terms: Public domain | W3C validator |