![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgr0e | Structured version Visualization version GIF version |
Description: The empty graph, with vertices but no edges, is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
umgr0e.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
umgr0e.e | ⊢ (𝜑 → (iEdg‘𝐺) = ∅) |
Ref | Expression |
---|---|
upgr0e | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr0e.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
2 | umgr0e.e | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = ∅) | |
3 | 1, 2 | umgr0e 28941 | . 2 ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
4 | umgrupgr 28934 | . 2 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∅c0 4324 ‘cfv 6551 iEdgciedg 28828 UPGraphcupgr 28911 UMGraphcumgr 28912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-i2m1 11212 ax-1ne0 11213 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-ov 7427 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-2 12311 df-upgr 28913 df-umgr 28914 |
This theorem is referenced by: upgr0eop 28945 upgr0eopALT 28947 |
Copyright terms: Public domain | W3C validator |