MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phiprmpw Structured version   Visualization version   GIF version

Theorem phiprmpw 16746
Description: Value of the Euler ϕ function at a prime power. Theorem 2.5(a) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
phiprmpw ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))

Proof of Theorem phiprmpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmnn 16644 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 nnnn0 12449 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 nnexpcl 14039 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑃𝐾) ∈ ℕ)
41, 2, 3syl2an 596 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℕ)
5 phival 16737 . . 3 ((𝑃𝐾) ∈ ℕ → (ϕ‘(𝑃𝐾)) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
64, 5syl 17 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
7 nnm1nn0 12483 . . . . . 6 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
8 nnexpcl 14039 . . . . . 6 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℕ0) → (𝑃↑(𝐾 − 1)) ∈ ℕ)
91, 7, 8syl2an 596 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℕ)
109nncnd 12202 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℂ)
111nncnd 12202 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
1211adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℂ)
13 ax-1cn 11126 . . . . 5 1 ∈ ℂ
14 subdi 11611 . . . . 5 (((𝑃↑(𝐾 − 1)) ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1513, 14mp3an3 1452 . . . 4 (((𝑃↑(𝐾 − 1)) ∈ ℂ ∧ 𝑃 ∈ ℂ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1610, 12, 15syl2anc 584 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1710mulridd 11191 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · 1) = (𝑃↑(𝐾 − 1)))
1817oveq2d 7403 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))))
19 fzfi 13937 . . . . . . 7 (1...(𝑃𝐾)) ∈ Fin
20 ssrab2 4043 . . . . . . 7 {𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ⊆ (1...(𝑃𝐾))
21 ssfi 9137 . . . . . . 7 (((1...(𝑃𝐾)) ∈ Fin ∧ {𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ⊆ (1...(𝑃𝐾))) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin)
2219, 20, 21mp2an 692 . . . . . 6 {𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin
23 ssrab2 4043 . . . . . . 7 {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ⊆ (1...(𝑃𝐾))
24 ssfi 9137 . . . . . . 7 (((1...(𝑃𝐾)) ∈ Fin ∧ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ⊆ (1...(𝑃𝐾))) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ∈ Fin)
2519, 23, 24mp2an 692 . . . . . 6 {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ∈ Fin
26 inrab 4279 . . . . . . 7 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))}
27 elfzelz 13485 . . . . . . . . . . . 12 (𝑥 ∈ (1...(𝑃𝐾)) → 𝑥 ∈ ℤ)
28 prmz 16645 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
29 rpexp 16692 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
3028, 29syl3an1 1163 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
31303expa 1118 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
3231an32s 652 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
33 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
34 zexpcl 14041 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝑃𝐾) ∈ ℤ)
3528, 2, 34syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℤ)
3635adantr 480 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑃𝐾) ∈ ℤ)
3733, 36gcdcomd 16484 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd (𝑃𝐾)) = ((𝑃𝐾) gcd 𝑥))
3837eqeq1d 2731 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ((𝑃𝐾) gcd 𝑥) = 1))
39 coprm 16681 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
4039adantlr 715 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
4132, 38, 403bitr4d 311 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃𝑥))
42 zcn 12534 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
4342adantl 481 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
4443subid1d 11522 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 − 0) = 𝑥)
4544breq2d 5119 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ (𝑥 − 0) ↔ 𝑃𝑥))
4645notbid 318 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (¬ 𝑃 ∥ (𝑥 − 0) ↔ ¬ 𝑃𝑥))
4741, 46bitr4d 282 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃 ∥ (𝑥 − 0)))
4827, 47sylan2 593 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃 ∥ (𝑥 − 0)))
4948biimpd 229 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 → ¬ 𝑃 ∥ (𝑥 − 0)))
50 imnan 399 . . . . . . . . . 10 (((𝑥 gcd (𝑃𝐾)) = 1 → ¬ 𝑃 ∥ (𝑥 − 0)) ↔ ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
5149, 50sylib 218 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
5251ralrimiva 3125 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∀𝑥 ∈ (1...(𝑃𝐾)) ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
53 rabeq0 4351 . . . . . . . 8 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))} = ∅ ↔ ∀𝑥 ∈ (1...(𝑃𝐾)) ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
5452, 53sylibr 234 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))} = ∅)
5526, 54eqtrid 2776 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ∅)
56 hashun 14347 . . . . . 6 (({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin ∧ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ∈ Fin ∧ ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ∅) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})))
5722, 25, 55, 56mp3an12i 1467 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})))
58 unrab 4278 . . . . . . . 8 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))}
5948biimprd 248 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (¬ 𝑃 ∥ (𝑥 − 0) → (𝑥 gcd (𝑃𝐾)) = 1))
6059con1d 145 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0)))
6160orrd 863 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
6261ralrimiva 3125 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∀𝑥 ∈ (1...(𝑃𝐾))((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
63 rabid2 3439 . . . . . . . . 9 ((1...(𝑃𝐾)) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))} ↔ ∀𝑥 ∈ (1...(𝑃𝐾))((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
6462, 63sylibr 234 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (1...(𝑃𝐾)) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))})
6558, 64eqtr4id 2783 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = (1...(𝑃𝐾)))
6665fveq2d 6862 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = (♯‘(1...(𝑃𝐾))))
674nnnn0d 12503 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℕ0)
68 hashfz1 14311 . . . . . . 7 ((𝑃𝐾) ∈ ℕ0 → (♯‘(1...(𝑃𝐾))) = (𝑃𝐾))
6967, 68syl 17 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘(1...(𝑃𝐾))) = (𝑃𝐾))
70 expm1t 14055 . . . . . . 7 ((𝑃 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) = ((𝑃↑(𝐾 − 1)) · 𝑃))
7111, 70sylan 580 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) = ((𝑃↑(𝐾 − 1)) · 𝑃))
7266, 69, 713eqtrd 2768 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((𝑃↑(𝐾 − 1)) · 𝑃))
731adantr 480 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℕ)
74 1zzd 12564 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 1 ∈ ℤ)
75 nn0uz 12835 . . . . . . . . . . 11 0 = (ℤ‘0)
76 1m1e0 12258 . . . . . . . . . . . 12 (1 − 1) = 0
7776fveq2i 6861 . . . . . . . . . . 11 (ℤ‘(1 − 1)) = (ℤ‘0)
7875, 77eqtr4i 2755 . . . . . . . . . 10 0 = (ℤ‘(1 − 1))
7967, 78eleqtrdi 2838 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ (ℤ‘(1 − 1)))
80 0zd 12541 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 0 ∈ ℤ)
8173, 74, 79, 80hashdvds 16745 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ((⌊‘(((𝑃𝐾) − 0) / 𝑃)) − (⌊‘(((1 − 1) − 0) / 𝑃))))
824nncnd 12202 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℂ)
8382subid1d 11522 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃𝐾) − 0) = (𝑃𝐾))
8483oveq1d 7402 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) − 0) / 𝑃) = ((𝑃𝐾) / 𝑃))
8573nnne0d 12236 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ≠ 0)
86 nnz 12550 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
8786adantl 481 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℤ)
8812, 85, 87expm1d 14121 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) = ((𝑃𝐾) / 𝑃))
8984, 88eqtr4d 2767 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) − 0) / 𝑃) = (𝑃↑(𝐾 − 1)))
9089fveq2d 6862 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝑃𝐾) − 0) / 𝑃)) = (⌊‘(𝑃↑(𝐾 − 1))))
919nnzd 12556 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℤ)
92 flid 13770 . . . . . . . . . . 11 ((𝑃↑(𝐾 − 1)) ∈ ℤ → (⌊‘(𝑃↑(𝐾 − 1))) = (𝑃↑(𝐾 − 1)))
9391, 92syl 17 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(𝑃↑(𝐾 − 1))) = (𝑃↑(𝐾 − 1)))
9490, 93eqtrd 2764 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝑃𝐾) − 0) / 𝑃)) = (𝑃↑(𝐾 − 1)))
9576oveq1i 7397 . . . . . . . . . . . . . 14 ((1 − 1) − 0) = (0 − 0)
96 0m0e0 12301 . . . . . . . . . . . . . 14 (0 − 0) = 0
9795, 96eqtri 2752 . . . . . . . . . . . . 13 ((1 − 1) − 0) = 0
9897oveq1i 7397 . . . . . . . . . . . 12 (((1 − 1) − 0) / 𝑃) = (0 / 𝑃)
9912, 85div0d 11957 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (0 / 𝑃) = 0)
10098, 99eqtrid 2776 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((1 − 1) − 0) / 𝑃) = 0)
101100fveq2d 6862 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((1 − 1) − 0) / 𝑃)) = (⌊‘0))
102 0z 12540 . . . . . . . . . . 11 0 ∈ ℤ
103 flid 13770 . . . . . . . . . . 11 (0 ∈ ℤ → (⌊‘0) = 0)
104102, 103ax-mp 5 . . . . . . . . . 10 (⌊‘0) = 0
105101, 104eqtrdi 2780 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((1 − 1) − 0) / 𝑃)) = 0)
10694, 105oveq12d 7405 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((⌊‘(((𝑃𝐾) − 0) / 𝑃)) − (⌊‘(((1 − 1) − 0) / 𝑃))) = ((𝑃↑(𝐾 − 1)) − 0))
10710subid1d 11522 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) − 0) = (𝑃↑(𝐾 − 1)))
10881, 106, 1073eqtrd 2768 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = (𝑃↑(𝐾 − 1)))
109108oveq2d 7403 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (𝑃↑(𝐾 − 1))))
110 hashcl 14321 . . . . . . . . 9 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℕ0)
11122, 110ax-mp 5 . . . . . . . 8 (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℕ0
112111nn0cni 12454 . . . . . . 7 (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℂ
113 addcom 11360 . . . . . . 7 (((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℂ ∧ (𝑃↑(𝐾 − 1)) ∈ ℂ) → ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (𝑃↑(𝐾 − 1))) = ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})))
114112, 10, 113sylancr 587 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (𝑃↑(𝐾 − 1))) = ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})))
115109, 114eqtrd 2764 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})))
11657, 72, 1153eqtr3rd 2773 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})) = ((𝑃↑(𝐾 − 1)) · 𝑃))
11710, 12mulcld 11194 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · 𝑃) ∈ ℂ)
118112a1i 11 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℂ)
119117, 10, 118subaddd 11551 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ↔ ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})) = ((𝑃↑(𝐾 − 1)) · 𝑃)))
120116, 119mpbird 257 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
12116, 18, 1203eqtrrd 2769 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))
1226, 121eqtrd 2764 1 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  {crab 3405  cun 3912  cin 3913  wss 3914  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  cfl 13752  cexp 14026  chash 14295  cdvds 16222   gcd cgcd 16464  cprime 16641  ϕcphi 16734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736
This theorem is referenced by:  phiprm  16747
  Copyright terms: Public domain W3C validator