MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndpsuppss Structured version   Visualization version   GIF version

Theorem mndpsuppss 18699
Description: The support of a mapping of a scalar multiplication with a function of scalars is a subset of the support of the function of scalars. (Contributed by AV, 5-Apr-2019.)
Hypothesis
Ref Expression
mndpsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
mndpsuppss (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))))

Proof of Theorem mndpsuppss
Dummy variables 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioran 985 . . . . . 6 (¬ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀)) ↔ (¬ (𝐴𝑥) ≠ (0g𝑀) ∧ ¬ (𝐵𝑥) ≠ (0g𝑀)))
2 nne 2930 . . . . . . 7 (¬ (𝐴𝑥) ≠ (0g𝑀) ↔ (𝐴𝑥) = (0g𝑀))
3 nne 2930 . . . . . . 7 (¬ (𝐵𝑥) ≠ (0g𝑀) ↔ (𝐵𝑥) = (0g𝑀))
42, 3anbi12i 628 . . . . . 6 ((¬ (𝐴𝑥) ≠ (0g𝑀) ∧ ¬ (𝐵𝑥) ≠ (0g𝑀)) ↔ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀)))
51, 4bitri 275 . . . . 5 (¬ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀)) ↔ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀)))
6 elmapfn 8841 . . . . . . . . . . . 12 (𝐴 ∈ (𝑅m 𝑉) → 𝐴 Fn 𝑉)
76ad2antrl 728 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐴 Fn 𝑉)
87adantr 480 . . . . . . . . . 10 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → 𝐴 Fn 𝑉)
9 elmapfn 8841 . . . . . . . . . . . 12 (𝐵 ∈ (𝑅m 𝑉) → 𝐵 Fn 𝑉)
109ad2antll 729 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐵 Fn 𝑉)
1110adantr 480 . . . . . . . . . 10 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → 𝐵 Fn 𝑉)
12 simplr 768 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝑉𝑋)
1312adantr 480 . . . . . . . . . 10 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → 𝑉𝑋)
14 inidm 4193 . . . . . . . . . 10 (𝑉𝑉) = 𝑉
15 simplrl 776 . . . . . . . . . 10 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) ∧ 𝑥𝑉) → (𝐴𝑥) = (0g𝑀))
16 simplrr 777 . . . . . . . . . 10 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) ∧ 𝑥𝑉) → (𝐵𝑥) = (0g𝑀))
178, 11, 13, 13, 14, 15, 16ofval 7667 . . . . . . . . 9 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) ∧ 𝑥𝑉) → ((𝐴f (+g𝑀)𝐵)‘𝑥) = ((0g𝑀)(+g𝑀)(0g𝑀)))
1817an32s 652 . . . . . . . 8 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ((𝐴f (+g𝑀)𝐵)‘𝑥) = ((0g𝑀)(+g𝑀)(0g𝑀)))
19 eqid 2730 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
20 eqid 2730 . . . . . . . . . . . 12 (0g𝑀) = (0g𝑀)
2119, 20mndidcl 18683 . . . . . . . . . . 11 (𝑀 ∈ Mnd → (0g𝑀) ∈ (Base‘𝑀))
2221ancli 548 . . . . . . . . . 10 (𝑀 ∈ Mnd → (𝑀 ∈ Mnd ∧ (0g𝑀) ∈ (Base‘𝑀)))
2322ad4antr 732 . . . . . . . . 9 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → (𝑀 ∈ Mnd ∧ (0g𝑀) ∈ (Base‘𝑀)))
24 eqid 2730 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
2519, 24, 20mndlid 18688 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (0g𝑀) ∈ (Base‘𝑀)) → ((0g𝑀)(+g𝑀)(0g𝑀)) = (0g𝑀))
2623, 25syl 17 . . . . . . . 8 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ((0g𝑀)(+g𝑀)(0g𝑀)) = (0g𝑀))
2718, 26eqtrd 2765 . . . . . . 7 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ((𝐴f (+g𝑀)𝐵)‘𝑥) = (0g𝑀))
28 nne 2930 . . . . . . 7 (¬ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀) ↔ ((𝐴f (+g𝑀)𝐵)‘𝑥) = (0g𝑀))
2927, 28sylibr 234 . . . . . 6 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ¬ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀))
3029ex 412 . . . . 5 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀)) → ¬ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)))
315, 30biimtrid 242 . . . 4 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (¬ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀)) → ¬ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)))
3231con4d 115 . . 3 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) ∧ 𝑥𝑉) → (((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀) → ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))))
3332ss2rabdv 4042 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → {𝑥𝑉 ∣ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))})
347, 10, 12, 12offun 7670 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → Fun (𝐴f (+g𝑀)𝐵))
35 ovexd 7425 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f (+g𝑀)𝐵) ∈ V)
36 fvexd 6876 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (0g𝑀) ∈ V)
37 suppval1 8148 . . . 4 ((Fun (𝐴f (+g𝑀)𝐵) ∧ (𝐴f (+g𝑀)𝐵) ∈ V ∧ (0g𝑀) ∈ V) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) = {𝑥 ∈ dom (𝐴f (+g𝑀)𝐵) ∣ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
3834, 35, 36, 37syl3anc 1373 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) = {𝑥 ∈ dom (𝐴f (+g𝑀)𝐵) ∣ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
3912, 7, 10offvalfv 7678 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴f (+g𝑀)𝐵) = (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))))
4039dmeqd 5872 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → dom (𝐴f (+g𝑀)𝐵) = dom (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))))
41 ovex 7423 . . . . . 6 ((𝐴𝑣)(+g𝑀)(𝐵𝑣)) ∈ V
42 eqid 2730 . . . . . 6 (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))) = (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣)))
4341, 42dmmpti 6665 . . . . 5 dom (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))) = 𝑉
4440, 43eqtrdi 2781 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → dom (𝐴f (+g𝑀)𝐵) = 𝑉)
4544rabeqdv 3424 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → {𝑥 ∈ dom (𝐴f (+g𝑀)𝐵) ∣ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
4638, 45eqtrd 2765 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) = {𝑥𝑉 ∣ ((𝐴f (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
47 elmapfun 8842 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → Fun 𝐴)
48 id 22 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → 𝐴 ∈ (𝑅m 𝑉))
49 fvexd 6876 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → (0g𝑀) ∈ V)
50 suppval1 8148 . . . . . . 7 ((Fun 𝐴𝐴 ∈ (𝑅m 𝑉) ∧ (0g𝑀) ∈ V) → (𝐴 supp (0g𝑀)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)})
5147, 48, 49, 50syl3anc 1373 . . . . . 6 (𝐴 ∈ (𝑅m 𝑉) → (𝐴 supp (0g𝑀)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)})
52 elmapi 8825 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
53 fdm 6700 . . . . . . 7 (𝐴:𝑉𝑅 → dom 𝐴 = 𝑉)
54 rabeq 3423 . . . . . . 7 (dom 𝐴 = 𝑉 → {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
5552, 53, 543syl 18 . . . . . 6 (𝐴 ∈ (𝑅m 𝑉) → {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
5651, 55eqtrd 2765 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → (𝐴 supp (0g𝑀)) = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
5756ad2antrl 728 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐴 supp (0g𝑀)) = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
58 elmapfun 8842 . . . . . . 7 (𝐵 ∈ (𝑅m 𝑉) → Fun 𝐵)
5958ad2antll 729 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → Fun 𝐵)
60 simprr 772 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → 𝐵 ∈ (𝑅m 𝑉))
61 suppval1 8148 . . . . . 6 ((Fun 𝐵𝐵 ∈ (𝑅m 𝑉) ∧ (0g𝑀) ∈ V) → (𝐵 supp (0g𝑀)) = {𝑥 ∈ dom 𝐵 ∣ (𝐵𝑥) ≠ (0g𝑀)})
6259, 60, 36, 61syl3anc 1373 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐵 supp (0g𝑀)) = {𝑥 ∈ dom 𝐵 ∣ (𝐵𝑥) ≠ (0g𝑀)})
63 elmapi 8825 . . . . . . . 8 (𝐵 ∈ (𝑅m 𝑉) → 𝐵:𝑉𝑅)
6463fdmd 6701 . . . . . . 7 (𝐵 ∈ (𝑅m 𝑉) → dom 𝐵 = 𝑉)
6564ad2antll 729 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → dom 𝐵 = 𝑉)
6665rabeqdv 3424 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → {𝑥 ∈ dom 𝐵 ∣ (𝐵𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)})
6762, 66eqtrd 2765 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → (𝐵 supp (0g𝑀)) = {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)})
6857, 67uneq12d 4135 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) = ({𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)} ∪ {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)}))
69 unrab 4281 . . 3 ({𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)} ∪ {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)}) = {𝑥𝑉 ∣ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))}
7068, 69eqtrdi 2781 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) = {𝑥𝑉 ∣ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))})
7133, 46, 703sstr4d 4005 1 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  {crab 3408  Vcvv 3450  cun 3915  wss 3917  cmpt 5191  dom cdm 5641  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654   supp csupp 8142  m cmap 8802  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Mndcmnd 18668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-1st 7971  df-2nd 7972  df-supp 8143  df-map 8804  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669
This theorem is referenced by:  mndpsuppfi  18700
  Copyright terms: Public domain W3C validator