Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rrhatsscchat | Structured version Visualization version GIF version |
Description: The real projective line is included in the complex projective line. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-rrhatsscchat | ⊢ ℝ̂ ⊆ ℂ̂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axresscn 11005 | . . 3 ⊢ ℝ ⊆ ℂ | |
2 | unss1 4126 | . . 3 ⊢ (ℝ ⊆ ℂ → (ℝ ∪ {∞}) ⊆ (ℂ ∪ {∞})) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℝ ∪ {∞}) ⊆ (ℂ ∪ {∞}) |
4 | df-bj-rrhat 35511 | . 2 ⊢ ℝ̂ = (ℝ ∪ {∞}) | |
5 | df-bj-cchat 35509 | . 2 ⊢ ℂ̂ = (ℂ ∪ {∞}) | |
6 | 3, 4, 5 | 3sstr4i 3975 | 1 ⊢ ℝ̂ ⊆ ℂ̂ |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3896 ⊆ wss 3898 {csn 4573 ℂcc 10970 ℝcr 10971 ∞cinfty 35506 ℂ̂ccchat 35508 ℝ̂crrhat 35510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-oadd 8371 df-omul 8372 df-er 8569 df-ec 8571 df-qs 8575 df-ni 10729 df-pli 10730 df-mi 10731 df-lti 10732 df-plpq 10765 df-mpq 10766 df-ltpq 10767 df-enq 10768 df-nq 10769 df-erq 10770 df-plq 10771 df-mq 10772 df-1nq 10773 df-rq 10774 df-ltnq 10775 df-np 10838 df-1p 10839 df-enr 10912 df-nr 10913 df-0r 10917 df-c 10978 df-r 10982 df-bj-cchat 35509 df-bj-rrhat 35511 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |