MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyss Structured version   Visualization version   GIF version

Theorem plyss 26156
Description: The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyss ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇))

Proof of Theorem plyss
Dummy variables 𝑘 𝑎 𝑛 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ)
2 cnex 11210 . . . . . . . 8 ℂ ∈ V
3 ssexg 5293 . . . . . . . 8 ((𝑇 ⊆ ℂ ∧ ℂ ∈ V) → 𝑇 ∈ V)
41, 2, 3sylancl 586 . . . . . . 7 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑇 ∈ V)
5 snex 5406 . . . . . . 7 {0} ∈ V
6 unexg 7737 . . . . . . 7 ((𝑇 ∈ V ∧ {0} ∈ V) → (𝑇 ∪ {0}) ∈ V)
74, 5, 6sylancl 586 . . . . . 6 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑇 ∪ {0}) ∈ V)
8 unss1 4160 . . . . . . 7 (𝑆𝑇 → (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0}))
98adantr 480 . . . . . 6 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0}))
10 mapss 8903 . . . . . 6 (((𝑇 ∪ {0}) ∈ V ∧ (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0})) → ((𝑆 ∪ {0}) ↑m0) ⊆ ((𝑇 ∪ {0}) ↑m0))
117, 9, 10syl2anc 584 . . . . 5 ((𝑆𝑇𝑇 ⊆ ℂ) → ((𝑆 ∪ {0}) ↑m0) ⊆ ((𝑇 ∪ {0}) ↑m0))
12 ssrexv 4028 . . . . 5 (((𝑆 ∪ {0}) ↑m0) ⊆ ((𝑇 ∪ {0}) ↑m0) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1311, 12syl 17 . . . 4 ((𝑆𝑇𝑇 ⊆ ℂ) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1413reximdv 3155 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1514ss2abdv 4041 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ⊆ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
16 sstr 3967 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ)
17 plyval 26150 . . 3 (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
1816, 17syl 17 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
19 plyval 26150 . . 3 (𝑇 ⊆ ℂ → (Poly‘𝑇) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
2019adantl 481 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑇) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
2115, 18, 203sstr4d 4014 1 ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  wrex 3060  Vcvv 3459  cun 3924  wss 3926  {csn 4601  cmpt 5201  cfv 6531  (class class class)co 7405  m cmap 8840  cc 11127  0cc0 11129   · cmul 11134  0cn0 12501  ...cfz 13524  cexp 14079  Σcsu 15702  Polycply 26141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-1cn 11187  ax-addcl 11189
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-map 8842  df-nn 12241  df-n0 12502  df-ply 26145
This theorem is referenced by:  plyssc  26157  elqaa  26282  aacjcl  26287  aalioulem3  26294  itgoss  43187  cnsrplycl  43191
  Copyright terms: Public domain W3C validator