MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyss Structured version   Visualization version   GIF version

Theorem plyss 26111
Description: The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyss ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇))

Proof of Theorem plyss
Dummy variables 𝑘 𝑎 𝑛 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ)
2 cnex 11156 . . . . . . . 8 ℂ ∈ V
3 ssexg 5281 . . . . . . . 8 ((𝑇 ⊆ ℂ ∧ ℂ ∈ V) → 𝑇 ∈ V)
41, 2, 3sylancl 586 . . . . . . 7 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑇 ∈ V)
5 snex 5394 . . . . . . 7 {0} ∈ V
6 unexg 7722 . . . . . . 7 ((𝑇 ∈ V ∧ {0} ∈ V) → (𝑇 ∪ {0}) ∈ V)
74, 5, 6sylancl 586 . . . . . 6 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑇 ∪ {0}) ∈ V)
8 unss1 4151 . . . . . . 7 (𝑆𝑇 → (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0}))
98adantr 480 . . . . . 6 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0}))
10 mapss 8865 . . . . . 6 (((𝑇 ∪ {0}) ∈ V ∧ (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0})) → ((𝑆 ∪ {0}) ↑m0) ⊆ ((𝑇 ∪ {0}) ↑m0))
117, 9, 10syl2anc 584 . . . . 5 ((𝑆𝑇𝑇 ⊆ ℂ) → ((𝑆 ∪ {0}) ↑m0) ⊆ ((𝑇 ∪ {0}) ↑m0))
12 ssrexv 4019 . . . . 5 (((𝑆 ∪ {0}) ↑m0) ⊆ ((𝑇 ∪ {0}) ↑m0) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1311, 12syl 17 . . . 4 ((𝑆𝑇𝑇 ⊆ ℂ) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1413reximdv 3149 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1514ss2abdv 4032 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ⊆ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
16 sstr 3958 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ)
17 plyval 26105 . . 3 (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
1816, 17syl 17 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
19 plyval 26105 . . 3 (𝑇 ⊆ ℂ → (Poly‘𝑇) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
2019adantl 481 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑇) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
2115, 18, 203sstr4d 4005 1 ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  Vcvv 3450  cun 3915  wss 3917  {csn 4592  cmpt 5191  cfv 6514  (class class class)co 7390  m cmap 8802  cc 11073  0cc0 11075   · cmul 11080  0cn0 12449  ...cfz 13475  cexp 14033  Σcsu 15659  Polycply 26096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-map 8804  df-nn 12194  df-n0 12450  df-ply 26100
This theorem is referenced by:  plyssc  26112  elqaa  26237  aacjcl  26242  aalioulem3  26249  itgoss  43159  cnsrplycl  43163
  Copyright terms: Public domain W3C validator