Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plyss | Structured version Visualization version GIF version |
Description: The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
plyss | ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . . . . . . 8 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ) | |
2 | cnex 10810 | . . . . . . . 8 ⊢ ℂ ∈ V | |
3 | ssexg 5216 | . . . . . . . 8 ⊢ ((𝑇 ⊆ ℂ ∧ ℂ ∈ V) → 𝑇 ∈ V) | |
4 | 1, 2, 3 | sylancl 589 | . . . . . . 7 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑇 ∈ V) |
5 | snex 5324 | . . . . . . 7 ⊢ {0} ∈ V | |
6 | unexg 7534 | . . . . . . 7 ⊢ ((𝑇 ∈ V ∧ {0} ∈ V) → (𝑇 ∪ {0}) ∈ V) | |
7 | 4, 5, 6 | sylancl 589 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑇 ∪ {0}) ∈ V) |
8 | unss1 4093 | . . . . . . 7 ⊢ (𝑆 ⊆ 𝑇 → (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0})) | |
9 | 8 | adantr 484 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0})) |
10 | mapss 8570 | . . . . . 6 ⊢ (((𝑇 ∪ {0}) ∈ V ∧ (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0})) → ((𝑆 ∪ {0}) ↑m ℕ0) ⊆ ((𝑇 ∪ {0}) ↑m ℕ0)) | |
11 | 7, 9, 10 | syl2anc 587 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((𝑆 ∪ {0}) ↑m ℕ0) ⊆ ((𝑇 ∪ {0}) ↑m ℕ0)) |
12 | ssrexv 3968 | . . . . 5 ⊢ (((𝑆 ∪ {0}) ↑m ℕ0) ⊆ ((𝑇 ∪ {0}) ↑m ℕ0) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
14 | 13 | reximdv 3192 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
15 | 14 | ss2abdv 3977 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))} ⊆ {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
16 | sstr 3909 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ) | |
17 | plyval 25087 | . . 3 ⊢ (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | |
18 | 16, 17 | syl 17 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
19 | plyval 25087 | . . 3 ⊢ (𝑇 ⊆ ℂ → (Poly‘𝑇) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | |
20 | 19 | adantl 485 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑇) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
21 | 15, 18, 20 | 3sstr4d 3948 | 1 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {cab 2714 ∃wrex 3062 Vcvv 3408 ∪ cun 3864 ⊆ wss 3866 {csn 4541 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 ↑m cmap 8508 ℂcc 10727 0cc0 10729 · cmul 10734 ℕ0cn0 12090 ...cfz 13095 ↑cexp 13635 Σcsu 15249 Polycply 25078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-1cn 10787 ax-addcl 10789 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-map 8510 df-nn 11831 df-n0 12091 df-ply 25082 |
This theorem is referenced by: plyssc 25094 elqaa 25215 aacjcl 25220 aalioulem3 25227 itgoss 40691 cnsrplycl 40695 |
Copyright terms: Public domain | W3C validator |