MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyss Structured version   Visualization version   GIF version

Theorem plyss 25093
Description: The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyss ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇))

Proof of Theorem plyss
Dummy variables 𝑘 𝑎 𝑛 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . 8 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ)
2 cnex 10810 . . . . . . . 8 ℂ ∈ V
3 ssexg 5216 . . . . . . . 8 ((𝑇 ⊆ ℂ ∧ ℂ ∈ V) → 𝑇 ∈ V)
41, 2, 3sylancl 589 . . . . . . 7 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑇 ∈ V)
5 snex 5324 . . . . . . 7 {0} ∈ V
6 unexg 7534 . . . . . . 7 ((𝑇 ∈ V ∧ {0} ∈ V) → (𝑇 ∪ {0}) ∈ V)
74, 5, 6sylancl 589 . . . . . 6 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑇 ∪ {0}) ∈ V)
8 unss1 4093 . . . . . . 7 (𝑆𝑇 → (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0}))
98adantr 484 . . . . . 6 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0}))
10 mapss 8570 . . . . . 6 (((𝑇 ∪ {0}) ∈ V ∧ (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0})) → ((𝑆 ∪ {0}) ↑m0) ⊆ ((𝑇 ∪ {0}) ↑m0))
117, 9, 10syl2anc 587 . . . . 5 ((𝑆𝑇𝑇 ⊆ ℂ) → ((𝑆 ∪ {0}) ↑m0) ⊆ ((𝑇 ∪ {0}) ↑m0))
12 ssrexv 3968 . . . . 5 (((𝑆 ∪ {0}) ↑m0) ⊆ ((𝑇 ∪ {0}) ↑m0) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1311, 12syl 17 . . . 4 ((𝑆𝑇𝑇 ⊆ ℂ) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1413reximdv 3192 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1514ss2abdv 3977 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ⊆ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
16 sstr 3909 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ)
17 plyval 25087 . . 3 (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
1816, 17syl 17 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
19 plyval 25087 . . 3 (𝑇 ⊆ ℂ → (Poly‘𝑇) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
2019adantl 485 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑇) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
2115, 18, 203sstr4d 3948 1 ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {cab 2714  wrex 3062  Vcvv 3408  cun 3864  wss 3866  {csn 4541  cmpt 5135  cfv 6380  (class class class)co 7213  m cmap 8508  cc 10727  0cc0 10729   · cmul 10734  0cn0 12090  ...cfz 13095  cexp 13635  Σcsu 15249  Polycply 25078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-1cn 10787  ax-addcl 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-map 8510  df-nn 11831  df-n0 12091  df-ply 25082
This theorem is referenced by:  plyssc  25094  elqaa  25215  aacjcl  25220  aalioulem3  25227  itgoss  40691  cnsrplycl  40695
  Copyright terms: Public domain W3C validator