MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyss Structured version   Visualization version   GIF version

Theorem plyss 26104
Description: The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyss ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇))

Proof of Theorem plyss
Dummy variables 𝑘 𝑎 𝑛 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ)
2 cnex 11149 . . . . . . . 8 ℂ ∈ V
3 ssexg 5278 . . . . . . . 8 ((𝑇 ⊆ ℂ ∧ ℂ ∈ V) → 𝑇 ∈ V)
41, 2, 3sylancl 586 . . . . . . 7 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑇 ∈ V)
5 snex 5391 . . . . . . 7 {0} ∈ V
6 unexg 7719 . . . . . . 7 ((𝑇 ∈ V ∧ {0} ∈ V) → (𝑇 ∪ {0}) ∈ V)
74, 5, 6sylancl 586 . . . . . 6 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑇 ∪ {0}) ∈ V)
8 unss1 4148 . . . . . . 7 (𝑆𝑇 → (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0}))
98adantr 480 . . . . . 6 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0}))
10 mapss 8862 . . . . . 6 (((𝑇 ∪ {0}) ∈ V ∧ (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0})) → ((𝑆 ∪ {0}) ↑m0) ⊆ ((𝑇 ∪ {0}) ↑m0))
117, 9, 10syl2anc 584 . . . . 5 ((𝑆𝑇𝑇 ⊆ ℂ) → ((𝑆 ∪ {0}) ↑m0) ⊆ ((𝑇 ∪ {0}) ↑m0))
12 ssrexv 4016 . . . . 5 (((𝑆 ∪ {0}) ↑m0) ⊆ ((𝑇 ∪ {0}) ↑m0) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1311, 12syl 17 . . . 4 ((𝑆𝑇𝑇 ⊆ ℂ) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1413reximdv 3148 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1514ss2abdv 4029 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ⊆ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
16 sstr 3955 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ)
17 plyval 26098 . . 3 (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
1816, 17syl 17 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
19 plyval 26098 . . 3 (𝑇 ⊆ ℂ → (Poly‘𝑇) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
2019adantl 481 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑇) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑇 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
2115, 18, 203sstr4d 4002 1 ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447  cun 3912  wss 3914  {csn 4589  cmpt 5188  cfv 6511  (class class class)co 7387  m cmap 8799  cc 11066  0cc0 11068   · cmul 11073  0cn0 12442  ...cfz 13468  cexp 14026  Σcsu 15652  Polycply 26089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-map 8801  df-nn 12187  df-n0 12443  df-ply 26093
This theorem is referenced by:  plyssc  26105  elqaa  26230  aacjcl  26235  aalioulem3  26242  itgoss  43152  cnsrplycl  43156
  Copyright terms: Public domain W3C validator