| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plyss | Structured version Visualization version GIF version | ||
| Description: The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyss | ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . . 8 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ) | |
| 2 | cnex 11210 | . . . . . . . 8 ⊢ ℂ ∈ V | |
| 3 | ssexg 5293 | . . . . . . . 8 ⊢ ((𝑇 ⊆ ℂ ∧ ℂ ∈ V) → 𝑇 ∈ V) | |
| 4 | 1, 2, 3 | sylancl 586 | . . . . . . 7 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑇 ∈ V) |
| 5 | snex 5406 | . . . . . . 7 ⊢ {0} ∈ V | |
| 6 | unexg 7737 | . . . . . . 7 ⊢ ((𝑇 ∈ V ∧ {0} ∈ V) → (𝑇 ∪ {0}) ∈ V) | |
| 7 | 4, 5, 6 | sylancl 586 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑇 ∪ {0}) ∈ V) |
| 8 | unss1 4160 | . . . . . . 7 ⊢ (𝑆 ⊆ 𝑇 → (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0})) | |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0})) |
| 10 | mapss 8903 | . . . . . 6 ⊢ (((𝑇 ∪ {0}) ∈ V ∧ (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0})) → ((𝑆 ∪ {0}) ↑m ℕ0) ⊆ ((𝑇 ∪ {0}) ↑m ℕ0)) | |
| 11 | 7, 9, 10 | syl2anc 584 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((𝑆 ∪ {0}) ↑m ℕ0) ⊆ ((𝑇 ∪ {0}) ↑m ℕ0)) |
| 12 | ssrexv 4028 | . . . . 5 ⊢ (((𝑆 ∪ {0}) ↑m ℕ0) ⊆ ((𝑇 ∪ {0}) ↑m ℕ0) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 14 | 13 | reximdv 3155 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 15 | 14 | ss2abdv 4041 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))} ⊆ {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| 16 | sstr 3967 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ) | |
| 17 | plyval 26150 | . . 3 ⊢ (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | |
| 18 | 16, 17 | syl 17 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| 19 | plyval 26150 | . . 3 ⊢ (𝑇 ⊆ ℂ → (Poly‘𝑇) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | |
| 20 | 19 | adantl 481 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑇) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| 21 | 15, 18, 20 | 3sstr4d 4014 | 1 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 Vcvv 3459 ∪ cun 3924 ⊆ wss 3926 {csn 4601 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 ℂcc 11127 0cc0 11129 · cmul 11134 ℕ0cn0 12501 ...cfz 13524 ↑cexp 14079 Σcsu 15702 Polycply 26141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-map 8842 df-nn 12241 df-n0 12502 df-ply 26145 |
| This theorem is referenced by: plyssc 26157 elqaa 26282 aacjcl 26287 aalioulem3 26294 itgoss 43187 cnsrplycl 43191 |
| Copyright terms: Public domain | W3C validator |