| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shlej1 | Structured version Visualization version GIF version | ||
| Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shlej1 | ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 2 | unss1 4185 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
| 3 | simpl1 1192 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Sℋ ) | |
| 4 | shss 31229 | . . . . . . 7 ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ ℋ) |
| 6 | simpl3 1194 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐶 ∈ Sℋ ) | |
| 7 | shss 31229 | . . . . . . 7 ⊢ (𝐶 ∈ Sℋ → 𝐶 ⊆ ℋ) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐶 ⊆ ℋ) |
| 9 | 5, 8 | unssd 4192 | . . . . 5 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ⊆ ℋ) |
| 10 | simpl2 1193 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ Sℋ ) | |
| 11 | shss 31229 | . . . . . . 7 ⊢ (𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ ℋ) |
| 13 | 12, 8 | unssd 4192 | . . . . 5 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∪ 𝐶) ⊆ ℋ) |
| 14 | occon2 31307 | . . . . 5 ⊢ (((𝐴 ∪ 𝐶) ⊆ ℋ ∧ (𝐵 ∪ 𝐶) ⊆ ℋ) → ((𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) | |
| 15 | 9, 13, 14 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → ((𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) |
| 16 | 2, 15 | syl5 34 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ 𝐵 → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) |
| 17 | 1, 16 | mpd 15 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) |
| 18 | shjval 31370 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐴 ∪ 𝐶)))) | |
| 19 | 3, 6, 18 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐴 ∪ 𝐶)))) |
| 20 | shjval 31370 | . . 3 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) | |
| 21 | 10, 6, 20 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) |
| 22 | 17, 19, 21 | 3sstr4d 4039 | 1 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∪ cun 3949 ⊆ wss 3951 ‘cfv 6561 (class class class)co 7431 ℋchba 30938 Sℋ csh 30947 ⊥cort 30949 ∨ℋ chj 30952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-hilex 31018 ax-hfvadd 31019 ax-hv0cl 31022 ax-hfvmul 31024 ax-hvmul0 31029 ax-hfi 31098 ax-his2 31102 ax-his3 31103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-sh 31226 df-oc 31271 df-chj 31329 |
| This theorem is referenced by: shlej2 31380 shlej1i 31397 chlej1 31529 |
| Copyright terms: Public domain | W3C validator |