| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shlej1 | Structured version Visualization version GIF version | ||
| Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shlej1 | ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 2 | unss1 4144 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
| 3 | simpl1 1192 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Sℋ ) | |
| 4 | shss 31189 | . . . . . . 7 ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ ℋ) |
| 6 | simpl3 1194 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐶 ∈ Sℋ ) | |
| 7 | shss 31189 | . . . . . . 7 ⊢ (𝐶 ∈ Sℋ → 𝐶 ⊆ ℋ) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐶 ⊆ ℋ) |
| 9 | 5, 8 | unssd 4151 | . . . . 5 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ⊆ ℋ) |
| 10 | simpl2 1193 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ Sℋ ) | |
| 11 | shss 31189 | . . . . . . 7 ⊢ (𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ ℋ) |
| 13 | 12, 8 | unssd 4151 | . . . . 5 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∪ 𝐶) ⊆ ℋ) |
| 14 | occon2 31267 | . . . . 5 ⊢ (((𝐴 ∪ 𝐶) ⊆ ℋ ∧ (𝐵 ∪ 𝐶) ⊆ ℋ) → ((𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) | |
| 15 | 9, 13, 14 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → ((𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) |
| 16 | 2, 15 | syl5 34 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ 𝐵 → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) |
| 17 | 1, 16 | mpd 15 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) |
| 18 | shjval 31330 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐴 ∪ 𝐶)))) | |
| 19 | 3, 6, 18 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐴 ∪ 𝐶)))) |
| 20 | shjval 31330 | . . 3 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) | |
| 21 | 10, 6, 20 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) |
| 22 | 17, 19, 21 | 3sstr4d 3999 | 1 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 ℋchba 30898 Sℋ csh 30907 ⊥cort 30909 ∨ℋ chj 30912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-hilex 30978 ax-hfvadd 30979 ax-hv0cl 30982 ax-hfvmul 30984 ax-hvmul0 30989 ax-hfi 31058 ax-his2 31062 ax-his3 31063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sh 31186 df-oc 31231 df-chj 31289 |
| This theorem is referenced by: shlej2 31340 shlej1i 31357 chlej1 31489 |
| Copyright terms: Public domain | W3C validator |