![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shlej1 | Structured version Visualization version GIF version |
Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shlej1 | ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
2 | unss1 4172 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
3 | simpl1 1191 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Sℋ ) | |
4 | shss 30321 | . . . . . . 7 ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ ℋ) |
6 | simpl3 1193 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐶 ∈ Sℋ ) | |
7 | shss 30321 | . . . . . . 7 ⊢ (𝐶 ∈ Sℋ → 𝐶 ⊆ ℋ) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐶 ⊆ ℋ) |
9 | 5, 8 | unssd 4179 | . . . . 5 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ⊆ ℋ) |
10 | simpl2 1192 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ Sℋ ) | |
11 | shss 30321 | . . . . . . 7 ⊢ (𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ ℋ) |
13 | 12, 8 | unssd 4179 | . . . . 5 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∪ 𝐶) ⊆ ℋ) |
14 | occon2 30399 | . . . . 5 ⊢ (((𝐴 ∪ 𝐶) ⊆ ℋ ∧ (𝐵 ∪ 𝐶) ⊆ ℋ) → ((𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) | |
15 | 9, 13, 14 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → ((𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) |
16 | 2, 15 | syl5 34 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ 𝐵 → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) |
17 | 1, 16 | mpd 15 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) |
18 | shjval 30462 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐴 ∪ 𝐶)))) | |
19 | 3, 6, 18 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐴 ∪ 𝐶)))) |
20 | shjval 30462 | . . 3 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) | |
21 | 10, 6, 20 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) |
22 | 17, 19, 21 | 3sstr4d 4022 | 1 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∪ cun 3939 ⊆ wss 3941 ‘cfv 6529 (class class class)co 7390 ℋchba 30030 Sℋ csh 30039 ⊥cort 30041 ∨ℋ chj 30044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7705 ax-resscn 11146 ax-1cn 11147 ax-icn 11148 ax-addcl 11149 ax-addrcl 11150 ax-mulcl 11151 ax-mulrcl 11152 ax-mulcom 11153 ax-addass 11154 ax-mulass 11155 ax-distr 11156 ax-i2m1 11157 ax-1ne0 11158 ax-1rid 11159 ax-rnegex 11160 ax-rrecex 11161 ax-cnre 11162 ax-pre-lttri 11163 ax-pre-lttrn 11164 ax-pre-ltadd 11165 ax-hilex 30110 ax-hfvadd 30111 ax-hv0cl 30114 ax-hfvmul 30116 ax-hvmul0 30121 ax-hfi 30190 ax-his2 30194 ax-his3 30195 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3430 df-v 3472 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4520 df-pw 4595 df-sn 4620 df-pr 4622 df-op 4626 df-uni 4899 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6481 df-fun 6531 df-fn 6532 df-f 6533 df-f1 6534 df-fo 6535 df-f1o 6536 df-fv 6537 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8683 df-en 8920 df-dom 8921 df-sdom 8922 df-pnf 11229 df-mnf 11230 df-ltxr 11232 df-sh 30318 df-oc 30363 df-chj 30421 |
This theorem is referenced by: shlej2 30472 shlej1i 30489 chlej1 30621 |
Copyright terms: Public domain | W3C validator |