| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shlej1 | Structured version Visualization version GIF version | ||
| Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shlej1 | ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 2 | unss1 4148 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
| 3 | simpl1 1192 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Sℋ ) | |
| 4 | shss 31139 | . . . . . . 7 ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ ℋ) |
| 6 | simpl3 1194 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐶 ∈ Sℋ ) | |
| 7 | shss 31139 | . . . . . . 7 ⊢ (𝐶 ∈ Sℋ → 𝐶 ⊆ ℋ) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐶 ⊆ ℋ) |
| 9 | 5, 8 | unssd 4155 | . . . . 5 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ⊆ ℋ) |
| 10 | simpl2 1193 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ Sℋ ) | |
| 11 | shss 31139 | . . . . . . 7 ⊢ (𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ ℋ) |
| 13 | 12, 8 | unssd 4155 | . . . . 5 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∪ 𝐶) ⊆ ℋ) |
| 14 | occon2 31217 | . . . . 5 ⊢ (((𝐴 ∪ 𝐶) ⊆ ℋ ∧ (𝐵 ∪ 𝐶) ⊆ ℋ) → ((𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) | |
| 15 | 9, 13, 14 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → ((𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) |
| 16 | 2, 15 | syl5 34 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ 𝐵 → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) |
| 17 | 1, 16 | mpd 15 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) |
| 18 | shjval 31280 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐴 ∪ 𝐶)))) | |
| 19 | 3, 6, 18 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐴 ∪ 𝐶)))) |
| 20 | shjval 31280 | . . 3 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) | |
| 21 | 10, 6, 20 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) |
| 22 | 17, 19, 21 | 3sstr4d 4002 | 1 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 ℋchba 30848 Sℋ csh 30857 ⊥cort 30859 ∨ℋ chj 30862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-hilex 30928 ax-hfvadd 30929 ax-hv0cl 30932 ax-hfvmul 30934 ax-hvmul0 30939 ax-hfi 31008 ax-his2 31012 ax-his3 31013 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sh 31136 df-oc 31181 df-chj 31239 |
| This theorem is referenced by: shlej2 31290 shlej1i 31307 chlej1 31439 |
| Copyright terms: Public domain | W3C validator |