Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  shlej1 Structured version   Visualization version   GIF version

Theorem shlej1 29149
 Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
shlej1 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 𝐶) ⊆ (𝐵 𝐶))

Proof of Theorem shlej1
StepHypRef Expression
1 simpr 488 . . 3 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐴𝐵)
2 unss1 4141 . . . 4 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
3 simpl1 1188 . . . . . . 7 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐴S )
4 shss 28999 . . . . . . 7 (𝐴S𝐴 ⊆ ℋ)
53, 4syl 17 . . . . . 6 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐴 ⊆ ℋ)
6 simpl3 1190 . . . . . . 7 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐶S )
7 shss 28999 . . . . . . 7 (𝐶S𝐶 ⊆ ℋ)
86, 7syl 17 . . . . . 6 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐶 ⊆ ℋ)
95, 8unssd 4148 . . . . 5 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴𝐶) ⊆ ℋ)
10 simpl2 1189 . . . . . . 7 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐵S )
11 shss 28999 . . . . . . 7 (𝐵S𝐵 ⊆ ℋ)
1210, 11syl 17 . . . . . 6 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐵 ⊆ ℋ)
1312, 8unssd 4148 . . . . 5 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐵𝐶) ⊆ ℋ)
14 occon2 29077 . . . . 5 (((𝐴𝐶) ⊆ ℋ ∧ (𝐵𝐶) ⊆ ℋ) → ((𝐴𝐶) ⊆ (𝐵𝐶) → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶)))))
159, 13, 14syl2anc 587 . . . 4 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → ((𝐴𝐶) ⊆ (𝐵𝐶) → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶)))))
162, 15syl5 34 . . 3 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴𝐵 → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶)))))
171, 16mpd 15 . 2 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶))))
18 shjval 29140 . . 3 ((𝐴S𝐶S ) → (𝐴 𝐶) = (⊥‘(⊥‘(𝐴𝐶))))
193, 6, 18syl2anc 587 . 2 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 𝐶) = (⊥‘(⊥‘(𝐴𝐶))))
20 shjval 29140 . . 3 ((𝐵S𝐶S ) → (𝐵 𝐶) = (⊥‘(⊥‘(𝐵𝐶))))
2110, 6, 20syl2anc 587 . 2 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐵 𝐶) = (⊥‘(⊥‘(𝐵𝐶))))
2217, 19, 213sstr4d 4000 1 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 𝐶) ⊆ (𝐵 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ∪ cun 3917   ⊆ wss 3919  ‘cfv 6343  (class class class)co 7149   ℋchba 28708   Sℋ csh 28717  ⊥cort 28719   ∨ℋ chj 28722 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-hilex 28788  ax-hfvadd 28789  ax-hv0cl 28792  ax-hfvmul 28794  ax-hvmul0 28799  ax-hfi 28868  ax-his2 28872  ax-his3 28873 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-ltxr 10678  df-sh 28996  df-oc 29041  df-chj 29099 This theorem is referenced by:  shlej2  29150  shlej1i  29167  chlej1  29299
 Copyright terms: Public domain W3C validator