HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shlej1 Structured version   Visualization version   GIF version

Theorem shlej1 31341
Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
shlej1 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 𝐶) ⊆ (𝐵 𝐶))

Proof of Theorem shlej1
StepHypRef Expression
1 simpr 484 . . 3 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐴𝐵)
2 unss1 4160 . . . 4 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
3 simpl1 1192 . . . . . . 7 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐴S )
4 shss 31191 . . . . . . 7 (𝐴S𝐴 ⊆ ℋ)
53, 4syl 17 . . . . . 6 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐴 ⊆ ℋ)
6 simpl3 1194 . . . . . . 7 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐶S )
7 shss 31191 . . . . . . 7 (𝐶S𝐶 ⊆ ℋ)
86, 7syl 17 . . . . . 6 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐶 ⊆ ℋ)
95, 8unssd 4167 . . . . 5 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴𝐶) ⊆ ℋ)
10 simpl2 1193 . . . . . . 7 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐵S )
11 shss 31191 . . . . . . 7 (𝐵S𝐵 ⊆ ℋ)
1210, 11syl 17 . . . . . 6 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐵 ⊆ ℋ)
1312, 8unssd 4167 . . . . 5 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐵𝐶) ⊆ ℋ)
14 occon2 31269 . . . . 5 (((𝐴𝐶) ⊆ ℋ ∧ (𝐵𝐶) ⊆ ℋ) → ((𝐴𝐶) ⊆ (𝐵𝐶) → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶)))))
159, 13, 14syl2anc 584 . . . 4 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → ((𝐴𝐶) ⊆ (𝐵𝐶) → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶)))))
162, 15syl5 34 . . 3 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴𝐵 → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶)))))
171, 16mpd 15 . 2 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶))))
18 shjval 31332 . . 3 ((𝐴S𝐶S ) → (𝐴 𝐶) = (⊥‘(⊥‘(𝐴𝐶))))
193, 6, 18syl2anc 584 . 2 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 𝐶) = (⊥‘(⊥‘(𝐴𝐶))))
20 shjval 31332 . . 3 ((𝐵S𝐶S ) → (𝐵 𝐶) = (⊥‘(⊥‘(𝐵𝐶))))
2110, 6, 20syl2anc 584 . 2 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐵 𝐶) = (⊥‘(⊥‘(𝐵𝐶))))
2217, 19, 213sstr4d 4014 1 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 𝐶) ⊆ (𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cun 3924  wss 3926  cfv 6531  (class class class)co 7405  chba 30900   S csh 30909  cort 30911   chj 30914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-hilex 30980  ax-hfvadd 30981  ax-hv0cl 30984  ax-hfvmul 30986  ax-hvmul0 30991  ax-hfi 31060  ax-his2 31064  ax-his3 31065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-sh 31188  df-oc 31233  df-chj 31291
This theorem is referenced by:  shlej2  31342  shlej1i  31359  chlej1  31491
  Copyright terms: Public domain W3C validator