HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shlej1 Structured version   Visualization version   GIF version

Theorem shlej1 31046
Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
shlej1 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 𝐶) ⊆ (𝐵 𝐶))

Proof of Theorem shlej1
StepHypRef Expression
1 simpr 484 . . 3 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐴𝐵)
2 unss1 4179 . . . 4 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
3 simpl1 1190 . . . . . . 7 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐴S )
4 shss 30896 . . . . . . 7 (𝐴S𝐴 ⊆ ℋ)
53, 4syl 17 . . . . . 6 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐴 ⊆ ℋ)
6 simpl3 1192 . . . . . . 7 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐶S )
7 shss 30896 . . . . . . 7 (𝐶S𝐶 ⊆ ℋ)
86, 7syl 17 . . . . . 6 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐶 ⊆ ℋ)
95, 8unssd 4186 . . . . 5 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴𝐶) ⊆ ℋ)
10 simpl2 1191 . . . . . . 7 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐵S )
11 shss 30896 . . . . . . 7 (𝐵S𝐵 ⊆ ℋ)
1210, 11syl 17 . . . . . 6 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐵 ⊆ ℋ)
1312, 8unssd 4186 . . . . 5 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐵𝐶) ⊆ ℋ)
14 occon2 30974 . . . . 5 (((𝐴𝐶) ⊆ ℋ ∧ (𝐵𝐶) ⊆ ℋ) → ((𝐴𝐶) ⊆ (𝐵𝐶) → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶)))))
159, 13, 14syl2anc 583 . . . 4 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → ((𝐴𝐶) ⊆ (𝐵𝐶) → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶)))))
162, 15syl5 34 . . 3 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴𝐵 → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶)))))
171, 16mpd 15 . 2 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶))))
18 shjval 31037 . . 3 ((𝐴S𝐶S ) → (𝐴 𝐶) = (⊥‘(⊥‘(𝐴𝐶))))
193, 6, 18syl2anc 583 . 2 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 𝐶) = (⊥‘(⊥‘(𝐴𝐶))))
20 shjval 31037 . . 3 ((𝐵S𝐶S ) → (𝐵 𝐶) = (⊥‘(⊥‘(𝐵𝐶))))
2110, 6, 20syl2anc 583 . 2 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐵 𝐶) = (⊥‘(⊥‘(𝐵𝐶))))
2217, 19, 213sstr4d 4029 1 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 𝐶) ⊆ (𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  cun 3946  wss 3948  cfv 6543  (class class class)co 7412  chba 30605   S csh 30614  cort 30616   chj 30619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-hilex 30685  ax-hfvadd 30686  ax-hv0cl 30689  ax-hfvmul 30691  ax-hvmul0 30696  ax-hfi 30765  ax-his2 30769  ax-his3 30770
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-ltxr 11260  df-sh 30893  df-oc 30938  df-chj 30996
This theorem is referenced by:  shlej2  31047  shlej1i  31064  chlej1  31196
  Copyright terms: Public domain W3C validator