| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shlej1 | Structured version Visualization version GIF version | ||
| Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shlej1 | ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 2 | unss1 4151 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
| 3 | simpl1 1192 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Sℋ ) | |
| 4 | shss 31146 | . . . . . . 7 ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ ℋ) |
| 6 | simpl3 1194 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐶 ∈ Sℋ ) | |
| 7 | shss 31146 | . . . . . . 7 ⊢ (𝐶 ∈ Sℋ → 𝐶 ⊆ ℋ) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐶 ⊆ ℋ) |
| 9 | 5, 8 | unssd 4158 | . . . . 5 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ⊆ ℋ) |
| 10 | simpl2 1193 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ Sℋ ) | |
| 11 | shss 31146 | . . . . . . 7 ⊢ (𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ ℋ) |
| 13 | 12, 8 | unssd 4158 | . . . . 5 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∪ 𝐶) ⊆ ℋ) |
| 14 | occon2 31224 | . . . . 5 ⊢ (((𝐴 ∪ 𝐶) ⊆ ℋ ∧ (𝐵 ∪ 𝐶) ⊆ ℋ) → ((𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) | |
| 15 | 9, 13, 14 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → ((𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) |
| 16 | 2, 15 | syl5 34 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ 𝐵 → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶))))) |
| 17 | 1, 16 | mpd 15 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘(⊥‘(𝐴 ∪ 𝐶))) ⊆ (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) |
| 18 | shjval 31287 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐴 ∪ 𝐶)))) | |
| 19 | 3, 6, 18 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐴 ∪ 𝐶)))) |
| 20 | shjval 31287 | . . 3 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) | |
| 21 | 10, 6, 20 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∨ℋ 𝐶) = (⊥‘(⊥‘(𝐵 ∪ 𝐶)))) |
| 22 | 17, 19, 21 | 3sstr4d 4005 | 1 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 ℋchba 30855 Sℋ csh 30864 ⊥cort 30866 ∨ℋ chj 30869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-hilex 30935 ax-hfvadd 30936 ax-hv0cl 30939 ax-hfvmul 30941 ax-hvmul0 30946 ax-hfi 31015 ax-his2 31019 ax-his3 31020 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sh 31143 df-oc 31188 df-chj 31246 |
| This theorem is referenced by: shlej2 31297 shlej1i 31314 chlej1 31446 |
| Copyright terms: Public domain | W3C validator |